Journal of Power Sources, Vol.269, 760-767, 2014
Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes
Three-dimensional carbon nanotubes@MnO2 core shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g(-1) at a current density of 0.3 A g(-1)), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. (C) 2014 Elsevier B.V. All rights reserved.