화학공학소재연구정보센터
Journal of Power Sources, Vol.272, 639-646, 2014
Controlled synthesis of CuInS2/reduced graphene oxide nanocomposites for efficient dye-sensitized solar cells
A nanocomposite comprised CuInS2 and reduced graphene oxide have been successfully synthesized via a facile two-step hydrothermal route using graphene oxide, thiourea, Indium chloride tetrahydrate and cuprous chloride as the raw materials, and L-Ascorbic acid as the reductant. Compared with pristine CuInS2, CuInS2 and reduced graphene oxide nanocomposites exploited as counter electrodes have exhibited outstanding electrocatalytic activity for the reduction of triiodide and excellent chemical stability due to the introduction of reduced graphene oxide. The characterization measurements indicate that the power conversion efficiency of dye-sensitized solar cell fabricated with CuInS2 and reduced graphene oxide nanocomposites counter electrode achieves 6.96%, which is higher than that of device using pristine CuInS2 counter electrode (5.49%), and comparable to the conventional platinum counter electrode (6.92%) under the same test conditions. (C) 2014 Elsevier B.V. All rights reserved.