- Previous Article
- Next Article
- Table of Contents
Journal of Structural Biology, Vol.188, No.2, 188-193, 2014
Revisiting the NMR solution structure of the Ce148S type-I dockerin module from Clostridium thermocellum reveals a cohesin-primed conformation
Dockerin modules of the cellulosomal enzyme subunits play an important role in the assembly of the cellulosome by binding tenaciously to cohesin modules of the scaffoldin subunit. A previously reported NMR-derived solution structure of the type-I dockerin module from Ce148S of Clostridium thermocellum, which utilized two-dimensional homonuclear H-1-H-1 NOESY and three-dimensional N-15-edited NOESY distance restraints, displayed substantial conformational differences from subsequent structures of dockerin modules in complex with their cognate cohesin modules, raising the question whether the source of the observed differences resulted from cohesin-induced structural rearrangements. Here, we determined the solution structure of the Ce148S type-I dockerin based on N-15- and C-13-edited NOESY-derived distance restraints. The structure adopted a fold similar to X-ray crystal structures of dockerin modules in complex with their cohesin partners. A unique cis-peptide bond between Leu-65 and Pro-66 in the Ce148S type-I dockerin module was also identified in the present structure. Our structural analysis of the Ce148S type-I dockerin module indicates that it does not undergo appreciable cohesin-induced structural alterations but rather assumes an inherent calcium-dependent cohesin-primed conformation. (C) 2014 Elsevier Inc. All rights reserved.