화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.37, 12888-12891, 2014
Compartmentalization of Single Polymer Chains by Stepwise Intramolecular Cross-Linking of Sequence-Controlled Macromolecules
We report the intramolecular double compaction of sequence-controlled linear macromolecules into "structured" random coils. These compartmentalized single-chain objects were prepared by performing successive cross-linking reactions in an orthogonal fashion. The foldable precursors were synthesized by sequence-controlled copolymerization of styrene with N-substituted maleimides (MIs), namely pentafluorophenyl 4-maleimidobenzoate (1) and TIPS-protected N-propargyl maleimide (2). These two functional MIs allow intramolecular cross-linking. The activated ester pentafluorophenyl moieties of 1 were reacted with ethylenediamine, whereas the deprotected alkyne functions of 2 were self-reacted by Eglinton coupling. The compaction of model copolymers containing only one cross-linkable zone (i.e., either 1 or 2) was first studied. H-1 NMR and SEC analysis indicated that these structures could be efficiently compacted into single-chain objects. Thus, more complex copolymers containing two individually addressable cross-linking zones were prepared and sequentially compacted. Detailed characterization of the folding process indicated that double-compaction occurred and that the formed single-chain particles contain distinct cross-linked subdomains.