화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.37, 13006-13015, 2014
Selective Catalytic Reduction of NO Over Fe-ZSM-5: Mechanistic Insights by Operando HERFD-XANES and Valence-to-Core X-ray Emission Spectroscopy
An in-depth understanding of the active site requires advanced operand techniques and the preparation of defined catalysts. We elucidate here the mechanism of the selective catalytic reduction of NO by NH3 (NH3-SCR) over a Fe-ZSM-5 zeolite catalyst. 1.3 wt % Fe-ZSM-5 with low nuclearity Fe sites was synthesized, tested in the SCR reaction and characterized by UV-vis, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy. Next, this defined Fe-zeolite catalyst was studied by complementary high-energy-resolution fluorescence-detected XANES (HERFD-XANES) and valence-to-core X-ray emission spectroscopy (V2C XES) under different model in situ and realistic working (operando) conditions identical to the catalyst test bench including the presence of water vapor. HERFD-XANES uncovered that the coordination (between 4 and 5), geometry (tetrahedral, partly 5-fold), and oxidation state of the Fe centers (reduced in NH3, partly in SCR mixture, slight reduction in NO) strongly changed. V2C XES supported by DFT calculations provided important insight into the chemical nature of the species adsorbed on Fe sites. The unique combination of techniques applied under realistic reaction conditions and the corresponding catalytic data unraveled the adsorption of ammonia via oxygen on the iron site. The derived reaction model supports a mechanism where adsorbed NO reacts with ammonia coordinated to the Fe3+ site yielding Fe2+ whose reoxidation is slow.