화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.38, 13134-13137, 2014
Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering
Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications that take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a poly(ethylene glycol) (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with C-13 and N-15, permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. The protein dynamics is suppressed upon initial formation of hydrogels, with a concomitant increase in protein stability. Relaxation of the hydrogel matrix following transient heating results in enhanced protein dynamics and resolution of substrate-induced large-amplitude domain rearrangements.