화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.50, 17477-17483, 2014
a A Resistance-Switchable and Ferroelectric Metal Organic Framework
The ever-emerging demands on miniaturization of electronic devices have pushed the development of innovative materials with desired properties. One major endeavor is the development of organic- or organic-inorganic hybrid-based electronics as alternatives or supplements to silicon-based devices. Herein we report the first observation of the coexistence of resistance switching and ferroelectricity in a metal-organic framework (MOF) material, [InC16H11N2O8]center dot 1.5H(2)O, denoted as RSMOF-1. The electrical resistance of RSMOF-1 can be turned on and off repeatedly with a current ratio of 30. A first-principles molecular dynamics simulation suggests that the resistive switching effect is related to the ferroelectric transition of N center dot center dot center dot H-O center dot center dot center dot H-N bridge-structured dipoles of the guest water molecules and the amino-tethered MOF nanochannel. The discovery of the resistive switching effect and ferroelectricity in MOFs offers great potential for the physical implementation of novel electronics for next-generation digital processing and communication.