Langmuir, Vol.30, No.37, 10984-10989, 2014
Multidimensional Quantitative Imaging of Gas Adsorption in Nanoporous Solids
X-ray computed tomography is applied to image gas adsorption in nanoporous solids. The equations are developed to calculate rigorous measures of adsorption, such as the excess adsorbed amount, by applying a dual-scanning technique. This approach is validated by considering the CO2/13X zeolite system in a fixed-bed adsorber, and multidimensional patterns are obtained of key characteristic properties, such as bed porosity, excess adsorption, and density of the adsorbed phase. The quantification of the spatial variability of the adsorbed amount within the system represents a major novelty with regards to conventional techniques. The ability to quantify adsorption with such a level of observational detail discloses unparalleled opportunities to interrogate and revisit adsorption processes in porous media.