Langmuir, Vol.31, No.3, 898-905, 2015
Fabrication and Characterization of Non-Brownian Particle-Based Crystals
Particle-based crystals have been explored in the literature for applications in molecular electronics, photonics, sensors, and drug delivery. However, much of the research on these crystals has been focused on particles of nano- and submicrometer dimensions (so-called colloidal crystals) with limited attention directed toward building blocks with dimensions ranging from tens to hundreds of micrometers. This can be attributed, in part, to the fact that the underlying thermal effects in these larger systems typically cannot naturally overcome kinetic barriers at the meso- and macroscales so that many of the methods used for nanoscale particle assembly cannot be directly applied to larger components, as they become kinetically arrested in nonequilibrium states. In this work, ultrasonic agitation is being explored as a means of allowing large, non-Brownian microparticles (18-750 mu m) to overcome the kinetic barriers to packing in the creation of close-packed, highly ordered, crystalline structures. In addition, we study how the energy input affects bulk particle behavior and describe several new ways to characterize particle-based crystals made from microparticles.