화학공학소재연구정보센터
Macromolecular Rapid Communications, Vol.36, No.4, 346-363, 2015
pH-Switchable Self-Assembled Materials
Self-assembled materials, which are able to respond to external stimuli, have been extensively studied over the last decades. A particularly exciting stimulus for a wide range of biomedical applications is the pH value of aqueous solutions, since deprotonation-protonation events are crucial for structural and functional properties of biopolymers. In living cells and tissues, intra- and extracellular pH values are stringently regulated, but can deviate from pH neutral as observed for example in tumorous, inflammatory sites, in endocytic pathways, and specific cellular compartments. By using a pH-switch as a stimulus, it is thereby possible to address specific targets in order to cause a programmed response of the supramolecular material. This strategy has not only been successfully applied in fundamental research but also in clinical studies. In this feature article, current strategies that have been used in order to design materials with pH-responsive properties are illustrated. This discussion only addresses selected examples from the last four years, the self-assembly of polymer-based building blocks, assemblies emerging from small molecules including surfactants or derived from biological macromolecules, and finally the controlled self-assembly of oligopeptides.