화학공학소재연구정보센터
Materials Chemistry and Physics, Vol.149, 701-712, 2015
Synthesis of periodic mesoporous organosilicas functionalized with different amine-organoalkoxysilanes via direct co-condensation
A series of amine-functionalized periodic mesoporous organosilicas (PMOs) were synthesized from bis(triethoxysilyl)ethane via surfactant-templating using supramolecular assemblies of hexadecyltrimethylammonium chloride under basic conditions. Functionalization of the PMO materials was performed via direct co-condensation in the presence of mono-, di- or tri-amine-organoalkoxysilanes. The effect of the type and concentration of the added organosilanes on the physicochemical properties of the functionalized PMOs were investigated. Thermogravimetric/differential thermal analysis (TG/DTA) and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of the inorganic organic hybrid framework functionalized with the amine groups. The total nitrogen content of the functionalized PMOs ranged from 0.26 to 1.27 mmol/g. The materials possessed a hexagonal lattice with the highly ordered mesostructure being preserved after the amine-functionalization as evidenced by X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). The N-2 adsorption desorption measurement revealed that the materials had high specific surface areas (963-1252 m(2)/g) and a relatively high total pore volume (0.52-0.85 cm(3)/g). The mesopore size and wall thickness of these materials varied in relation with the molecular size and the loading of the organosilanes. Moreover, the morphology of the PMO materials was increasingly transformed from irregular shaped particles to spheres with increasing amounts of amine-functional groups or with organo-functional groups with several amine units. (C) 2014 Elsevier B.V. All rights reserved.