화학공학소재연구정보센터
Materials Chemistry and Physics, Vol.154, 38-43, 2015
A low temperature reduction of CCl4 to solid and hollow carbon nanospheres using metallic sodium
Carbon nanospheres are obtained by reacting metallic sodium at 100 degrees C with tetrachloromethane under a flow of N-2 gas at ambient pressure. The product consisted of both hollowed and solid carbon spheres, ranging between 20 and 300 nm in size and comprised of concentrically oriented, disordered graphitic fragments. The maximum surface area recorded for this nanostructured carbon is 830 m(2) g(-1) Morphological, structural, and chemical analysis of the product is carried out with HR-TEM, BET surface area, XPS, XRD, and Raman spectroscopy. The formation of the spherical shape of the carbon nanoparticles is discussed based on direct observations of the reaction at the interfacial phase boundary. (C) 2015 Elsevier B.V. All rights reserved.