화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.11, No.10, 889-894, October, 2001
RF 스퍼터링법으로 사파이어 기판 위에 성장한 ZnO와 ZnO : A1 박막의 질소 및 수소 후열처리에 따른 Photoluminescence 특성
A study of the photoluminescence of undoped ZnO and Al doped ZnO single crystal films on sapphire substrate grown by RF magnetron sputtering
E-mail:
2wt% Al 2 O 3 ?doped ZnO (AZO) thin films were deposited on sapphire (0001) single crystal substrate by parellel type rf magnetron sputtering at 55 0 ? C . The as-grown AZO thin films was polycrystalline and showed only broad deep defect-level photoluminescence (PL). In order to examine the change of PL property, AZO thin films were annealed in N 2 (N-AZO) and H 2 (H-AZO) at the temperature of 600 ? C ~ 1000 ? C through rapid thermal annealing. After annealed at 800 ? C , N-AZO shows near band edge emission (NBE) with very small deep-level emission, and then N-AZO annealed at 900 ? C shows only sharp NBE with 219 meV FWHM. In Comparison with N-AZO, H-AZO exhibits very interesting PL features. After 600 ? C annealing, deep defect-level emission was quire quenched and NBE around 382 nm (3.2 eV) was observed, which can be explained by the H 2 passivation effect. At elevated temperature, two interesting peaks corresponding to violet (406 nm, 3.05 eV) and blue (436 nm, 2.84 eV) emission was firstly observed in AZO thin films. Moreover, peculiar PL peak around 694 nm (1.78 eV) is also firstly observed in all the H-AZO thin films and this is believed good evidence of hydrogenation of AZO. Based on defect-level scheme calculated by using the full potential linear muffin-tin orbital (FP-LMTO), the emission 3.2 eV, 3.05 eV, 3.84 eV and 1.78 eV of H-AZO are substantially deginated as exciton emission, transition from conduction band maximum to V Zn , from Zn i , to valence band maximum (V BM ) and from V_{o} to V_BM} , respectively.
  1. Ryu YR, Zhu S, Look DC, Wrobel JM, Jeong HM, White HW, J. Cryst. Growth, 216(1-4), 330 (2000)
  2. Aoki T, Hatanaka Y, Look DC, Appl. Phys. Lett, 76(22), 3257 (2000)
  3. Minegishi K, Koiwai Y, Kikuchi Y, Jpn. J. Appl. Phys., 36, L1453 (1997)
  4. Postava K, Sueki H, Aoyama M, Yamaguchi T, Murakami K, Igasaki Y, Appl. Surf. Sci., 175, 543 (2001)
  5. Miyazaki M, Sato K, Mitsui A, Nishimura H, J. Non-Cryst Solids, 218, 323 (1997)
  6. Ryu YR, Zhu S, Look DC, Wrobel JM, Jeong HM, White HW, J. Cryst. Growth, 216(1-4), 330 (2000)
  7. Tominaga K, Umezu N, Mori I, Ushiro T, Moriga T, Nakabayashi I, Thin Solid Films, 316(1-2), 85 (1998)
  8. Minami T, Sato H, Nanto H, Takata S, Jpn. J. Appl. Phys., 24, L781 (1985)
  9. Cebulla R, Wendt R, Ellmer K, J. Appl. Phys., 83(2), 1087 (1998)
  10. Kim K, Park KC, Ma DY, J. Appl. Phys., 81(12), 7764 (1997)
  11. Tominaga K, Umezu N, Mori I, Ushiro T, Moriga T, Nakabayashi I, J. Vac. Sci. Technol. A, 16(3), 1213 (1998)
  12. Hu J, Gordon RG, J. Appl. Phys., 72, 5381 (1992)
  13. Lgasaki Y, Saito H, J. Appl. Phys., 69(4), 2190 (1991)
  14. Chen Y, Bagnell DM, Koh HJ, Park KT, Hiraga K, Zhu Z, Yao T, J. Appl. Phys., 84, 3912 (1998)
  15. Makino T, Tuan NT, Segawa Y, Chia CH, Ohtomo A, Kawasaki M, Koinuma H, J. Lumin., 87, 210 (2000)
  16. Kim KK, Song JH, Jung HJ, Choi WK, Park SJ, Song JH, Lee JY, J. Vac. Sci. Technol. A, 18(6), 2864 (2000)
  17. Bagnall DM, Chen YF, Shen MY, Zhu Z, Goto T, Yao T, J. Crystal Growth, 184-185, 605 (1998)
  18. Sekiguchi T, Ohashi N, Terada Y, Jpn. J. Appl. Phys, 36, L289 (1997)
  19. Lee JM, Chang KM, Kim KK, Choi WK, Park SJ, J. Electrochem. Soc., 148 (2001)
  20. Sekiguchi T, Haga K, Inaba K, J. Cryst. Growth, 214, 68 (2000)
  21. Kroger FA, The Chemistry of Imperfect Crystals, North Holland, Amsterdam (1974) (1974)
  22. Vanheusden K, Seager CH, Warren WL, Tallant DR, Voiget JA, Appl. Phys. Lett, 68, 403 (1996)
  23. Tanaka S, Takahashi K, Sekiguchi T, Sumino K, Tanaka J, J. Appl. Phys., 77(8), 4021 (1995)