화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.11, No.10, 900-906, October, 2001
ICP 스퍼터를 이용한 TMR 소자 제작에서 절연막의 플라즈마 산화시간에 따른 미세구조 및 자기적 특성 변화
Effect of plasma oxidation time on TMR devices prepared by a ICP sputter
E-mail:
We prepared tunnel magnetoresistance(TMR) devices of Ta( 50\AA )/NiFe( 50\AA )/IrMn(150 \AA )/CoFe( 50\AA )/Al ( 13\AA )-O/CoFe( 40\AA )/NiFe( 400\AA )/Ta(50 \AA ) structure which has 100 × 100 μm 2 junction area on 2.5\Times2.5cm 2 Si/SiO 2 ( 1000\AA ) substrates by a inductively coupled plasma(ICP) magnetron sputter. We fabricated the insulating layer using a ICP plasma oxidation method by varying oxidation time from 80 sec to 360 sec, and measured resistances and magnetoresistance(MR) ratios of TMR devices. We used a high resolution transmission electron microscope(HRTEM) to investigate microstructural evolution of insulating layer. The average resistance of devices increased from 16.38 Ω to 1018 Ω while MR ratio decreased from 30.31 %(25.18 %) to 15.01 %(14.97 %) as oxidation time increased from 80 sec to 360 sec. The values in brackets are calculated values considering geometry effect. By comparing cross-sectional TEM images of 220 sec and 360 sec-oxidation time, we found that insulating layer of 360 sec-oxidized was 30 % and 40% greater than that of 150 sec-oxidized in thickness and thickness variation, respectively. Therefore, we assumed that increase of thickness variation with oxidation time is major reason of MR decrease. The resistance of 80 sec-oxidized specimen was 160 k Ω μm 2 which is appropriate for industrial needs of magnetic random access memory(MRAM) application.
  1. Julliere M, Phys. Lett., 54A, 225 (1975)
  2. Slonczewski JC, Phys. Rev. B, 39, 6995 (1989)
  3. Moodera JS, Kinder LR, Wong TM, Meservey R, Phys. Rev. Lett., 74, 3273 (1995)
  4. Miyazaki T, Tezuka N, J. Magn. Magn. Mater., 139, L231 (1995)
  5. Gallapher WJ, Parkin SSp, Lu Y, Bian XP, Marley A, Altman KPRA, Rishton SA, Jahres C, Shaw TM, Xiao G, J. Appl. Phys., 81, 3741 (1997)
  6. Moodera JS, Mathon G, J. Magn. Magn. Mater., 200, 248 (1999)
  7. Wong PK, Evetts JE, Blamire MG, J. Appl. Phys., 83, 6697 (1998)
  8. Moodera JS, Kinder LR, J. Appl. Phys., 79, 4724 (1996)
  9. Moodera JS, Gallapher EF, Robinson K, Nowak J, Appl. Phys. Lett., 70, 3050 (1997)
  10. Sato M, Kikuchi H, Kobayashi K, J. Appl. Phys., 83, 6691 (1998)
  11. Gider S, Runge BU, Marley AC, Parkin SSP, Science, 281, 797 (1998)
  12. Cheung KP, Chang CP, J. Appl. Phys., 75(9), 4415 (1994)
  13. Sugawara J, Nakashio E, Kumagai S, Honda J, Ikeda Y, Miyazaki T, J. Magn. Soc. Jpn., 23(4), 1281 (1999)
  14. Moodera JS, Kinder LR, Nowak J, LeClair P, Meservey R, Appl. Phys. Lett., 69(5), 708 (1996)
  15. Pederson RJ, Vernon FL, Jr., Appl. Phys. Lett., 10, 29 (1967)
  16. Miyazaki T, J. Magn. Soc. Jap., 25(4), 471 (2001)
  17. Kyung H, Ahn HS, Yoon CS, Kim CK, Song O, Miyazaki T, Ando Y, Kubota H, J. Appl. Phys, 89(5), 2752 (2001)