Korean Journal of Materials Research, Vol.11, No.10, 900-906, October, 2001
ICP 스퍼터를 이용한 TMR 소자 제작에서 절연막의 플라즈마 산화시간에 따른 미세구조 및 자기적 특성 변화
Effect of plasma oxidation time on TMR devices prepared by a ICP sputter
E-mail:
We prepared tunnel magnetoresistance(TMR) devices of Ta( 50\AA )/NiFe( 50\AA )/IrMn(150 \AA )/CoFe( 50\AA )/Al ( 13\AA )-O/CoFe( 40\AA )/NiFe( 400\AA )/Ta(50 \AA ) structure which has 100 × 100 μm 2 junction area on 2.5\Times2.5cm 2 Si/SiO 2 ( 1000\AA ) substrates by a inductively coupled plasma(ICP) magnetron sputter. We fabricated the insulating layer using a ICP plasma oxidation method by varying oxidation time from 80 sec to 360 sec, and measured resistances and magnetoresistance(MR) ratios of TMR devices. We used a high resolution transmission electron microscope(HRTEM) to investigate microstructural evolution of insulating layer. The average resistance of devices increased from 16.38 Ω to 1018 Ω while MR ratio decreased from 30.31 %(25.18 %) to 15.01 %(14.97 %) as oxidation time increased from 80 sec to 360 sec. The values in brackets are calculated values considering geometry effect. By comparing cross-sectional TEM images of 220 sec and 360 sec-oxidation time, we found that insulating layer of 360 sec-oxidized was 30 % and 40% greater than that of 150 sec-oxidized in thickness and thickness variation, respectively. Therefore, we assumed that increase of thickness variation with oxidation time is major reason of MR decrease. The resistance of 80 sec-oxidized specimen was 160 k Ω μm 2 which is appropriate for industrial needs of magnetic random access memory(MRAM) application.
- Julliere M, Phys. Lett., 54A, 225 (1975)
- Slonczewski JC, Phys. Rev. B, 39, 6995 (1989)
- Moodera JS, Kinder LR, Wong TM, Meservey R, Phys. Rev. Lett., 74, 3273 (1995)
- Miyazaki T, Tezuka N, J. Magn. Magn. Mater., 139, L231 (1995)
- Gallapher WJ, Parkin SSp, Lu Y, Bian XP, Marley A, Altman KPRA, Rishton SA, Jahres C, Shaw TM, Xiao G, J. Appl. Phys., 81, 3741 (1997)
- Moodera JS, Mathon G, J. Magn. Magn. Mater., 200, 248 (1999)
- Wong PK, Evetts JE, Blamire MG, J. Appl. Phys., 83, 6697 (1998)
- Moodera JS, Kinder LR, J. Appl. Phys., 79, 4724 (1996)
- Moodera JS, Gallapher EF, Robinson K, Nowak J, Appl. Phys. Lett., 70, 3050 (1997)
- Sato M, Kikuchi H, Kobayashi K, J. Appl. Phys., 83, 6691 (1998)
- Gider S, Runge BU, Marley AC, Parkin SSP, Science, 281, 797 (1998)
- Cheung KP, Chang CP, J. Appl. Phys., 75(9), 4415 (1994)
- Sugawara J, Nakashio E, Kumagai S, Honda J, Ikeda Y, Miyazaki T, J. Magn. Soc. Jpn., 23(4), 1281 (1999)
- Moodera JS, Kinder LR, Nowak J, LeClair P, Meservey R, Appl. Phys. Lett., 69(5), 708 (1996)
- Pederson RJ, Vernon FL, Jr., Appl. Phys. Lett., 10, 29 (1967)
- Miyazaki T, J. Magn. Soc. Jap., 25(4), 471 (2001)
- Kyung H, Ahn HS, Yoon CS, Kim CK, Song O, Miyazaki T, Ando Y, Kubota H, J. Appl. Phys, 89(5), 2752 (2001)