화학공학소재연구정보센터
Process Safety and Environmental Protection, Vol.92, No.6, 565-576, 2014
Dynamic accident modeling for high-sulfur natural gas gathering station
Dynamic accident modeling for a gas gathering station is implemented to prevent high-sulfur natural gas leakage and develop equipment inspection strategy. The progress of abnormal event occurring in the gas gathering station is modeled by the combination of fault tree and event sequence diagram, based on accident causal chain theory, i.e. the progress is depicted as sequential failure of safety barriers, then, the occurrence probability of the consequence of abnormal event is predicted. Consequences of abnormal events are divided into accidents and accident precursors which include incidents, near misses and so on. The Bayesian theory updates failure probability of safety barrier when a new observation (i.e. accident precursors or accidents data) arrives. Bayesian network then correspondingly updates failure probabilities of basic events of the safety barriers with the ability of abductive reasoning. Consequence occurrence probability is also updated. The results show that occurrence probability trend of different consequences and failure probability trend of safety barriers and basic events of the safety barriers can be obtained using this method. In addition, the critical basic events which play an important role in accidents occurrence are also identified. All of these provide useful information for the maintenance and inspection of the gas gathering station. (C) 2013 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.