화학공학소재연구정보센터
Renewable Energy, Vol.67, 252-256, 2014
Design of an exhaust air energy recovery wind turbine generator for energy conservation in commercial buildings
The exhaust air energy recovery wind turbine generator is an on-site clean energy generator that utilizes the advantages of discharged air which is strong, consistent and predictable. Two vertical axis wind turbines (VAWTs) in cross-wind orientation which are integrated with an enclosure are installed above a cooling tower to harness the discharged wind for electricity generation. It is mounted at a specific distance and position above the cooling tower outlet. The enclosure (consisting of several guide-vanes and diffuser-plates) acts as a wind power-augmentation device to improve the performance of the VAWTs. The guide-vanes are placed in between the discharged air outlet and the wind turbine. They are designed to guide the on-coming wind stream to an optimum flow angle before it interacts with the rotor blades. The diffuser-plates are built extended from the outlet duct of the exhaust air system. They are tilted at an optimum angle to draw more wind and accelerate the discharged air flow. A particular concern related to public safety which may be due to blade failure is minimized since the VAWTs are contained inside the enclosure. The performance of the VAWTs and its effects on the cooling tower's air intake speed and current consumption of the power-driven fan were investigated. A laboratory test was conducted to evaluate the effectiveness of the energy recovery wind turbine (5-bladed H-rotor with 03 m diameter) generator on a cooling tower model. The results showed a reduction in the power consumption of the fan motor for cooling tower with energy recovery turbine compared to the normal cooling tower while the intake air speed increased. Meanwhile, the VAWT's performance was improved by a 7% increase in rotational speed and 41% reduction in response time (time needed for the turbine to reach maximum rotational speed) with the integration of the enclosure. This system can be used as a supplementary power for building lighting or fed into electricity grid for energy demand in urban building. The energy output is predictable and consistent, allowing simpler design of the downstream system. The fact that there is an abundance of cooling tower applications and unnatural exhaust air resources globally causes this to have great market potential. (C) 2013 Elsevier Ltd. All rights reserved.