화학공학소재연구정보센터
Renewable Energy, Vol.68, 67-79, 2014
Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach
Recently, the increasing energy demand has caused dramatic consumption of fossil fuels and unavoidable raising energy prices. Moreover, environmental effect of fossil fuel led to the need of using renewable energy (RE) to meet the rising energy demand. Unpredictability and the high cost of the renewable energy technologies are the main challenges of renewable energy usage. In this context, the integration of renewable energy sources to meet the energy demand of a given area is a promising scenario to overcome the RE challenges. In this study, a novel approach is proposed for optimal design of hybrid renewable energy systems (HRES) including various generators and storage devices. The epsilon-constraint method has been applied to minimize simultaneously the total cost of the system, unmet load, and fuel emission. A particle swarm optimization (PSO)-simulation based approach has been used to tackle the multi-objective optimization problem. The proposed approach has been tested on a case study of an HRES system that includes wind turbine, photovoltaic (PV) panels, diesel generator, batteries, fuel cell (FC), electrolyzer and hydrogen tank. Finally, a sensitivity analysis study is performed to study the sensibility of different parameters to the developed model. (C) 2014 Published by Elsevier Ltd.