화학공학소재연구정보센터
Thermochimica Acta, Vol.591, 45-50, 2014
Thermal investigations of nanoaluminum/perfluoropolyether core-shell impregnated composites for structural energetics
An operationally simple blendable approach to producing structural energetic composites loaded with nanoaluminum (n-Al) particles coated by perfluoropolyethers (PFPE) yields shape moldable, structurally flexible materials. The epoxide system of poly(ethylene glycol) diglycidyl ether (PEG-DGE) and triethylenetetramine (TETA) are partially cured with an energetic blend of n-Al/PFPE core-shell particles and mechanically mixed and produce a homogeneous composite material whereby energetic potency is indefinitely shelf-stable. The composites are characterized by a suite of thermal techniques using DSC, TGA, and SDT in addition to open flame burn rate and heat of combustion measurements. This composite system may further expand the use of energetic materials with tailorable exothermic properties. Published by Elsevier B.V.