화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.11, No.8, 655-660, August, 2001
In 0.5 (Ga 1?x Al x ) 0.5 P /GaAs 이중 이종접합 구조에 대한 표면 광전압 특성
Surface Photovoltage Characteristics of In 0.5 (Ga 1?x Al x ) 0.5 P /GaAs Double Heterostructures
초록
Metalorganic chemical vapor deposition (MOCVD)으로 성장한 In 0.5 ( Gal 1?x Al x )0.5P/GaAS 이중 이종접합 구조의 특성을 표면 광전압 (surface Photovoltage ; SPV) 측정으로 연구하였다. In 0.5 ( Gal 1?x Al x )0.5P/GaAS 이중 이종접합 구조의 SPV 측정값을 Lorentzian 피팅한 띠 간격에너지 ( E 0 ) 값과 조성비 (x)로 구한 이론 값이 잘 일치하였다. 그리고 변조 주파수 의존성을 측정한 결과 SPV 신호의 형태는 변하지 않고, 신호의 크기만이 변하는 것은 광 조사에 따른 전기적 상태의 과도 현상에 따른 것이고, GaAs와 InGaAlP의 특성시간의 차이는 광 캐리어의 수명의 차이로 분석된다. 그리고 온도 의존성 측정으로 In 0.5 /( Gal 1?x Al x )0.5P/GaAS 이중 이종 접합 시료의 균일한 변형분포와 계면상태가 양호함을 알 수 있었다.
Surface photovoltage spectroscopy was used to study In 0.5 (Ga 1?x Al x ) 0.5 P/GaAs grown by metalorganic chemical vapor deposition(MOCVD). Energy gap related transition in GaAs and In 0.5 (Ga 1?x Al x ) 0.5 P were observed. By measuring the frequency dependence of In 0.5 (Ga 1?x Al x ) 0.5 P/GaAs , we observed that SPV line shape does not chance, whereas the amplitude change. This results is due to the difference in the lifetimes of the photocarriers in GaAs and in In 0.5 (Ga 1?x Al x ) 0.5 P . We also have evaluated the parameters that describe the temperature dependences of the band gap.
  1. Kapon E, Semiconductor Laser, Academic Press, London, 8 (1999) (1999)
  2. Itaya K, Sugawara H, Hatakoshi G, J. Cryst. Growth, 138, 768 (1994)
  3. Kobayashi K, KaWaTa S, Gomyo A, Hino I, Suzuki T, Electron Lett., 21, 931 (1985)
  4. Sun BQ, Lu ZD, Jiang DS, Wu JQ, Xu Z, Appl. Phys. Lett., 73, 2697 (1998)
  5. Anedda A, Casu MB, Serpi A, J. Appl. Phys., 79, 6995 (1996)
  6. Shkenasy NB, Kronik L, Spira Y, Appl. Phys. Lett., 68, 879 (1996)
  7. Aigouy L, Pollak FH, Pelruzzllo J, Shahzad K, Solid State Commun., 102, 877 (1997)
  8. Leibovitch M, Kronik L, Fefer E, Korobov V, Shapira Y, Appl. Phys. Lett., 79, 8549 (1996)
  9. Kumar S, Ganguli T, Bhattacharya P, Roy UN, Appl. Phys. Lett., 72, 3020 (1998)
  10. Blood P, J. Appl. Phys, 58, 2288 (1985)
  11. Ashkenasy N, Leibovitch M, Rosenwaks Y, Shapira Y, Barnham KWJ, Nelson J, Barnes J, J. Appl. Phys, 86, 6902 (1999)
  12. Kronik L, Shapira Y, Surf. Sci. Rep., 37, 1 (1999)
  13. Chui H, Gardner NF, Grillot PN, Huang JW, Krames MR, Maranowski SA, Semiconductors and semimetals, 64 (2000)
  14. Feng ZC, Armour E, Ferguson I, Stall RA, J. Appl. Phys., 85, 3824 (1999)
  15. Adachi S, Ozaki S, Sato M, Ohtsuka K, Jpn. J. Appl. Phys., 35, 537 (1996)
  16. Cao DS, Kimball AW, Stringfellow GB, J. Appl. Phys., 67, 739 (1990)
  17. Asahi H, Kawamura Y, Nagai H, J. Appl. Phys, 53, 4928 (1982)
  18. Bour DP, Shearly JR, IEEE J. Quantum Electron. QE-24, 1856 (1988)
  19. Mowbray DK, Kowalski OP, Hopkinson M, Skolnick MS, David JPR, Appl. Phys. Lett., 65, 213 (1994)
  20. Najda SP, Kean AH, Dawson MD, Duggan G, J. Appl. Phys, 77, 3412 (1995)
  21. DeLong MC, Mowbray DJ, Hogg RA, Skolnick MS, Williams JE, Meehan K, Kurtz SR, Olson JM, Schneider RP, Wu MC, Hopkinson M, Appl. Phys. Lett., 66, 3185 (1995)
  22. Swaminathan V, Sturge MD, Zilko JL, J. Appl. Phys, 52, 6306 (1981)
  23. Glembocki OJ, Shanabrook BV, Bottka N, Beard WT, Comas J, Appl. Phys. Lett., 46, 970 (1985)
  24. Honma N, Munakata C, Shimizu H, J. Appl. Phys., 27, 1498 (1988)
  25. Honma N, Munakata C, Itoh H, Warabisako T, J. Appl. Phys, 25, 743 (1986)
  26. Liu W, Jiang D, Zhang Y, J. Appl. Phys., 77, 4564 (1995)
  27. Leibovitch M, Kronik L, Fefer E, Shapira Y, Phys. Rev. B, 50, 1739 (1994)
  28. Zhou W, Dutta M, Soon H, Pamulapati J, Bennett BR, Perry CH, Weyburne DW, J. Appl. Phys., 73, 1266 (1993)
  29. Lautenschlager P, Garriga M, Vina L, Cardona M, Phys. Rev. B, 36, 4821 (1987)
  30. Kangarlu A, Chandrasekher HR, Chandrasekher M, Kapoor YM, Chambers FA, Vojak BA, Meese JM, Phys. Rev. B, 37, 1035 (1988)