화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.11, No.8, 708-712, August, 2001
Microwave Dielectric Properties of ( Pb 0.2 Ca 0.8 )[ (Ca 1/3 Nb 2/3 ) 1?x Ti x O 3 세라믹스의 마이크로파 유전특성
Microwave Dielectric Properties of ( Pb 0.2 Ca 0.8 )[ (Ca 1/3 Nb 2/3 ) 1?x Ti x ] O 3 Ceramics
초록
( Pb 0.2 Ca 0.8 )[( Ca 1 3 Nb 2 3/) 1?x Ti x ]O 3 세라믹스의 4+ 치환량 변화에 따른 마이크로파 유전특성을 고찰하였다. Ti 4+ 치환량이 증가함에 따라 x=0.05부터 x=0.15까지의 조성범위에서는 단일상의 페롭스카이트상을 얻을 수 있었으며, x=0.2이상에서는 Ti 2 와 CaNb 2 O 6 가 제 2상으로 존재하였고, 결정구조는 x=0.05에서 사방정(orthorhombic) 구조가 x=0.35에서 이방정(cubic) 구조로 전이하였다. 유전상수(K)는 Ti 4+ 치환량의 증가에 따라 rattling 효과의 증가로 인하여 증가되었으며, B-자리 양이온의 평균이온반겨의 세제곱의 반비례하였다. 그러나 결정립 크기의 감소와 제 2상의 존재로 인하여 Qf값은 감소하였다. Ti 4+ 치환량이 증가됨에 따리 tolerance factor(t)와 B-자리 결합원자가의 영향으로 공진주파수의 온도계수(TCF)는 -27.36ppm/ ? C 값으로부터 +18ppm/ ? C r값으로 조절되었다. 1350 ? C d서 3시간 소결한 ( Pb 0.2 Ca 0.8 )[(Ca 1 3 Nb 2 3) 1?x / Ti x ] O 3 시편에서 K=51.67, Qf=7268(GHz), TCF=0 ppm/ ? C 의 우수한 특성을 얻을 수 있었다.
Microwave dielectric properties of (Pb 0.2 Ca 0.8 )[(Ca 1/3 Nb2/3) 1?x Ti x ]O 3 ceramics were investigated as a function of Ti 4+ content (0.05 ≤ x ≤ 0.35). A single perovskite phase was obtained from x=0.05 to x=0.15, and TiO 2 and CaNb 2 O 6 were detected as a secondary phase beyond x=0.2. The structure was changed from orthorhombic at x=0.05 to cubic at x=0.35. Dielectric constant(K) was increased with increase of Ti 4+ content due to increase of rattling effect, and was inversely proportional to the cube of the average radius of B-site cation, however, Qf value was decreased, which was due to the decrease of grain size and the secondary phase. With the increase of Ti 4+ content, the temperature coefficient of resonant frequency(TCF) was controlled from -27.36 ppm/ ? C value to +18.4 ppm/ ? C value, which was caused by the influence of tolerance factor(t) and the bond valence of B-site. Typically, K of 51.67, Qf of 7268(GHz), TCF of 0 ppm/ ? C were obtained in the (Pb 0.2 Ca 0.8 )[(Ca 1/3 Nb 2/3 ) 0.8 Ti 0 .2]O 3 sintered at 13 50 ? C for 3h.
  1. Kato J, Kagata H, Nishimoto K, Jpn. J. Appl. Phys., 30(9B), 2343 (1991)
  2. Kato J, Kagata H, Nishimoto K, Jpn. J. Appl. Phys., 31, 3144 (1992)
  3. Kagata H, Kato J, Nishimoto K, Inoue T, Jpn. J. Appl. Phys., 32, 4332 (1993)
  4. Park HS, Yoon KH, Kim ES, J. Am. Ceram. Soc., 84, 199 (2001)
  5. Reaney IM, Colla EL, Setter N, Jpn. J. Appl. Phys., 33(7A), 3984 (1994)
  6. Shannon RD, Acta Cryst A., 32, 751 (1976)
  7. Swartz SL, Shrout TR, Mater Res. Bull., 17, 1245 (1982)
  8. Akabas MA, Davis PK, J. Mater. Res., 12, 102617 (1997)
  9. Cohen MU, Rev. Sci. Instrum., 6, 68 (1935)
  10. ASSTM C373-72. 313 (1982) (1982)
  11. Hakki BW, Coleman PD, IRE Trans. Microwave Theory Tech., 8, 402 (1960)
  12. Nishikawa T, Wakino K, Tanaka H, Ishikawa Y, IEEE MTT-S Digest, 277 (1987)
  13. Kay HF, Bailey PC, Acta Cryst., 10, 219 (1957)
  14. Kim WS, Kim ES, Yoon KH, J. Am. Ceram. Soc., 82(8), 2111 (1999)
  15. Shannon RD, J. Appl. Phys., 73(1), 348 (1993)