화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.2, 210-216, April, 2015
석탄계 입상 활성탄에 의한 Brilliant Blue FCF 염료의 흡착 동력학 및 열역학에 관한 연구
Adsorption Kinetics and Thermodynamics of Brilliant Blue FCF Dye onto Coal Based Granular Activated Carbon
E-mail:
초록
석탄계 입상 활성탄을 사용하여 수용액으로부터 brilliant blue FCF 염료의 흡착에 대해 조사하였다. 회분식 실험은 흡착제의 양, 초기농도와 접촉시간과 온도를 흡착변수로 사용하여 수행하였다. 흡착평형자료는 Langmuir, Freundlich 및 Temkin 식을 사용하여 해석한 결과 Freundlich 식이 가장 좋은 일치도를 나타냈다. 평가된 Freundlich 상수(1/n = 0.129 ∼0.212)로부터 이 흡착공정이 적절한 처리방법이 될 수 있음을 알았다. 흡착속도실험자료를 유사일차 및 유사이차 반응속도식에 적용해 본 결과는 유사이차반응속도식에 잘 맞는 것으로 나타났다. 음수값의 Gibbs 자유에너지(-4.81∼-10.33 kJ/mol)와 양수값의 엔탈피(+78.59 kJ/mol)는 흡착이 자발적이고 흡열공정으로 진행된다는 것을 나타냈다.
Adsorption of brilliant blue FCF dye using coal based the granular activated carbon from aqueous solution was investigated. Batch experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The equilibrium adsorption data were fitted to Langmuir, Freundlich and Temkin models. The results indicate that Freundlich model provides the best correlation of the experimental data. Base on the estimated Freundlich constant (1/n = 0.129∼0.212), this process could be employed as an effective treatment method. Adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations. It was shown that the pseudo-second-order kinetic equation could describe well the adsorption kinetics. The negative Gibbs free energy value (-4.81∼-10.33 kJ/mol) and positive enthalpy value (+78.59 kJ/mol) indicated that the adsorption was a spontaneous and endothermic process.
  1. Lee JW, Safety assessment of food additives by combined exposure: five tar food colors, 14-15, Korean Ministry of Food and Drug Safety, Seoul (2007)
  2. Baek HH, Kwon HC, Choi SH, Lee KW, Safety of food additives, 47-84, Korean Food Safety Reserch Institute, Seoul (2009)
  3. Korean Ministry of Food and Drug Safety, Dietary intake of food additive by korean population-coal tar dye, combined diet intake, 120-131, Hanhakmunhwa, Seoul (2006)
  4. Maloney JP, Halbower AC, Fouty BF, Fagan KA, Balasubramaniam V, Pike AW, Fennessey PV, Moss M, Engl N, J. Med., 343, 1047 (2000)
  5. Maloney JP, Ryan TA, Brasel KJ, Binion DG, Johnson DR, Halbower AC, Frankel EH, Nyffeler M, Moss M, Nutr. Clin. Practice, 17, 168 (2002)
  6. Hansen WH, Fitzhugh OG, Nelson AA, Davis KJ, Toxicol. Appl. Pharmacol., 8, 29 (1966)
  7. Ketelsen H, Meyer-Windel S, Geoderma, 90, 131 (1999)
  8. German-Heins J, Flury M, Geoderma, 97, 87 (2000)
  9. Gupta VK, Mittal A, Krishnan L, Mittal J, J. Colloid Interface Sci., 293(1), 16 (2006)
  10. Wu ZJ, Joo H, Lee K, Chem. Eng. J., 112(1-3), 227 (2005)
  11. Mittal A, J. Hazard. Mater., 128(2-3), 233 (2006)
  12. Mahmoudi K, Hosni K, Hamdi N, Srasra E, Korean J. Chem. Eng., 32(2), 274 (2015)
  13. Yun SK, Kim JW, Im JS, Kim SD, Hong JS, Suh JK, Lee YS, Trans. Korean. Hydro. New Energy Soc., 17, 434 (2006)
  14. Lee JJ, Appl. Chem. Eng., 25(1), 96 (2014)
  15. Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154(1-3), 337 (2008)
  16. Sivakumar P, Palanisamy PN, Int. J. Chem. Tech. Res., 1, 502 (2009)
  17. Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365 (2009)
  18. Ngah WSW, Hanafiah MAKM, Biochem. Eng. J., 39, 521 (2008)
  19. Dogan M, Alkan M, Demirbas O, Ozdemir Y, Ozmetin C, Chem. Eng. J., 124(1-3), 89 (2006)
  20. Xing G, Liu S, Xu Q, Liu Q, Carbohydr. Polym., 87, 1447 (2012)
  21. Ghaedi M, Hossainian H, Montazerozohori M, Shokrollahi A, Shojaipour F, Soylak M, Purkait MK, Desalination, 281, 226 (2011)