화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.11, No.5, 405-412, May, 2001
Nb 첨가 핵연료피복관용 Zr 신합금의 부식특성 연구
Study on Corrosion Characteristic of New Nb-containing Zr based Alloys for Fuel cladding
초록
본 연구에서는 360 ? C 물 및 360 ? C , 70ppm LiOH 수용액 분위기의 static autoclave를 이용하여 새롭게 개발한 Zr 신합금 (Zr-0.4Nb-0.8Sn-xFeCrMn, Zr-0.2Nb-1.1Sn-xFeCrMn, Zr-1.0Nb-xFeCu) 의 부식 특성을 평가하였다. 합금의 미세구조를 광학현미경과 TEM을 이용하여 관찰하였고, 부식시험 중에 생성된 산화막은 SEM과 XRD를 이용하여 단면 및 결정구조를 조사하였다. 부식시험 결과, 3종의 합금 모두 360 ? C 물 분위기보다 360 ? C , 70ppm LiOH 수용액 분위기에서의 부식저항성이 감소하였으며 특히, High Nb 합금의 경우 급격한 가속 부식현상을 나타내었다. 합금원소 첨가량과 관련하여 Nb의 함량을 고용도 이내로 줄이고 Sn을 적절히 첨가한 조성의 합금이 Sn을 첨가하지 않고 고용도 이상의 Nb을 가진 합금보다 우수한 부식저항성을 나타내었다. 또한 최종열처리가 부식에 미치는 영향의 경우에, 완전재결정 조직의 합금이 부분재결정 조직을 가진 합금보다 부식저항성이 감소되었는데 이는 기지조직에서 석출하늘 제 2상의 크기 및 분포에 의한 영향으로 사료된다.
Corrosion tests were carried out in 360 ? C water and 360 ? C 70ppm LiOH solution to investigate the corrosion behavior of new zirconium alloys (Zr-0.4Nb-0.8Sn-xFeCrMn, Zr-0.2Nb-1.1Sn-xFeCrMn, Zr-1.0Nb-xFeCu). Microstructures of tested alloys were analyzed by optical microscope and TEM. The cross-sectional surface and crystalline structure of the oxide layer were analyzed by SEM and XRD. From the results of corrosion test, all the alloys showed higher corrosion rates in 360 ? C 70ppm LiOH aqueous solution thats in 360 ? C water. Especially, high Nb-containing alloy exhibited the acceleration of corrosion rate in LiOH solution. The low Nb- and Sn-added alloys showed better corrosion resistance than the Sn- free high Nb alloy. from the effect of final annealing on the corrosion, it was observed that the partially recrystallized alloys showed better corrosion resistance than fully recrystallized alloys. This would be related to the size and distribution of the second phase particles.
  1. Sabol GP, Kilp GR, Balfour MG, Roberts E, Zirconium in the Nuclear Industry, ASTM STP 1023 (1994) 663 (1994)
  2. Jeong YH, Baek JH, J. Corro. Sci. Soc. Kor., 27, 339 (1998)
  3. Rudling P, Pettersson H, Andersson H, Thorvaldsson T, ASTM STP 1023 (1989) 213 (1989)
  4. Schemel JH, Charquet D, Wadier JF, Zirconium in the Nuclear Industry, ASTM STP 1023 (1989) 141 (1989)
  5. Ramasubramania N, Balakrishnan PV, Zirconium in the Nuclear Industry, ASTM STP 1245 (1994) 378 (1994)
  6. Ramasubramanian N, Precoanin, Ling VC, Zirconium in the Nuclear Industry, ASTM STP 1023 (1989) 187 (1989)
  7. Ramasubramanian N, Zirconium in the Nuclear Industry, ASTM STP 1132 (1991) 613 (1991)
  8. Porte HA, Schnizlein JG, Vogel RC, Fisher DF, J. Electrochem. Soc., 107, 506 (1960)
  9. Nomura S, Akutsu C, Electrochem. Techno., 4 (1966)
  10. Kim KH, Chot BK, Baek JH, Kim SJ, Jeong YH, Korean J. Mater. Res., 9(2), 188 (1999)
  11. Zaimovsky AS, Nikulina AV, Reshetnikov NG, Zr Alloys In Nuclear Power, Moscow, Energoizdat (1981) (1981)
  12. Urbanic VF, Gilbert RW, IAEA Technical Coprnmittee Meeting Fundamental Aspects of Corrosion of Zirconium Base Alloys in Water Reactor Environments, Portland, Oregon, Sep. 11-15, (1989) (1989)
  13. Jeong YH, Korean J. Mater. Res., 6, 585 (1996)
  14. Kim HC, Lee MH, Park SY, Jeong YH, J. Kor. Inst. Met. Mater., 37, 1527 (1999)
  15. Kim HG, Lim YS, Weyand MY, Jeong YH, J. Kor. Inst. Met. Mater., 37, 584 (1999)
  16. Choo KN, Kang YH, Pyun SI, Urbanic VF, J. Nucl. Mat., 209, 226 (1994)
  17. Aldridge SA, Chedle BA, J. Nucl. Mat., 42, 32 (1972)
  18. Beie HJ, Mitwalsky A, Garzarrolli F, Ruhmann H, Sell HJ, Zirconium in the Nuclear Industry, ASTM STP 1245 (1994) 615 (1994)
  19. Kim HG, MS thesis, Chungbuk Univ. (1998) (1998)
  20. Godlewski J, The Morphology of Zirconium Films and It's Relation to the Oxidation Kinetics, AECL Report, AECL-3285 (1965) (1965)
  21. IAEA, Corrosion of Zirconium Alloys in Nuclear Power Plants, IA EA - TECDOC-684 (1993) (1993)