화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.11, No.4, 278-282, April, 2001
사파이어( α -Al 2 O 3 ) 단결정에 있어 basal slip (0001)1/3 전위 Part I : 재결합거동
Basal slip (0001)1/3 dislocation in sapphire ( α -Al 2 O 3 ) single crystals Part I : recombination motion
초록
사파이어( α - Al 2 O 3 ) 단결정에 있어 basal slip (0001)1/3 의 부분전위의 재결합거동을 알아보기 위해 prism plane (1120)의 사파이어 재료를 사용하여 4점 곡강도 시험을 행하였다. 이 굽힘시험은 온도 1200 ? C ~ 1400 ? C 에서 그리고 응력은 90MPa, 120MPa, 150MPa에서 행하여졌다 굽힘시험 동안 basal전위가 이동하기 위해 잠복기가 필요하였다. 실험온도 범위내에서 잠복기의 활성화에너지는 5.6-6.0eV이었으며, 이 잠복기는 자체-상승운동으로 분해된 부분전위들이 재결합하는데 필요한 시간인 것으로 추정되었다. 한편, 이 활성화에너지는 Al 2 O 3 에 있어 산소의 자체 확산을 위한 에너지 (대fir 6.3eV)와 거의 일치하였다. 이 결과를 통하여, 두 부분전위들의 재결합은 부분전위사이 적층결함으로 산소 자체확산에 의해 제어되는 것으로 여겨진다.
he recombination motion of Partial dislocations on basal slip (0001) 1/3 in sapphire ( α -Al 2 O 3 ) single crystals was investigated using the four-point bending test with the prism plane (1120) samples. These bending experiments were carried but in the temperature range from 1200 ? C to 1400 ? C at various engineering stresses 90MPa, 120MPa, and 150MPa. During these tests it was shown that an incubation time was needed for basal slip to be activated. The activation energy for the incubation time was 5.6-6.0eV in the temperature range from 1200 ? C to 1400 ? C . The incubation time is believed to be related to recombination of climb dissociated partial dislocations via self-climb. In addition, these activation energies are nearly same as those for oxygen self-diffusion in Al 2 O 3 (approximately 6.3 eV). Thus, the recombination of the two partial dislocations would be possibly controlled by oxygen diffusion on the stacking fault between the partials.
  1. Kronberg ML, Acta Metall., 5(9), 507 (1957)
  2. Wachtman JB, Maxwell LH, J. Am. Ceram. Soc., 437(7), 291 (1954)
  3. Mitchell TE, Lagerlof KPD, Heuer AH, Mater. Sci. Technol., Dislocations in Ceramics, 1, 349 (1985)
  4. Wachtman JB, Maxwell LH, J. Am. Ceram. Soc, 40(11), 377 (1957)
  5. Kronberg ML, J. Am. Ceram. Soc, 45(6), 274 (1962)
  6. Firestone RF, Heuer AH, J. Am. Ceram. Soc, 56(3), 136 (1973)
  7. Conrad H, Stone G, Janowski K, Trans. AIME, 233(5), 889 (1965)
  8. Radford KC, Pratt PL, Proc. Brit. Ceram. Soc, 15, 185 (1970)
  9. Klassen-Neklyudova MV, Govorkov VG, Urusovskaya AA, Voinova NN, Kozkovsskaya EP, Phys. Status Solidi, 39(2), 679 (1970)
  10. Johnston WG, Gilman JJ, J. Appl. Phys, 30(2), 129 (1959)
  11. Conrad H, 'Yielding and Flow of Iron,' pp.315 in Iron and Its Dilute Solid Solutions. Edited by Spencer CW, Werner FE, Interscience Publishers, Inc., New York, 1963 (1963)
  12. Hahn GT, Acta Metall., 10(8), 727 (1962)
  13. Pletka BJ, Mitchell TE, Heuer AH, J. Am. Ceram. Soc, 57(9), 388 (1974)
  14. Lagerloof KPD, Pletka BJ, Mitchell TE, Heuer AH, Radiation Effects, 74, 87 (1983)
  15. Mitchell TE, Pletka BJ, Phillips DS, Heuer AH, Phil. Mag., 34, 441 (1976)
  16. Lagerlof KPD, Mitchell TE, Heuer AH, Acta Metall., 32(1), 99 (1984)
  17. Timoshenko S, 'Theory of Elasticity,' pp.319 (McGrow-Hill) (1961) (1961)
  18. Howitt DG, Mitchell TE, Phil. Mag. A, 44(1), 229 (1981)
  19. Kenway PR, Phil. Mag. B, 68(2), 171 (1993)
  20. Hirth JP, Lothe J, 'Theory of Dislocations,' pp. 91-92, pp.555-559 (New York:McGraw-Hill) (1972) (1972)
  21. Bullough R, Newman RC, Phil. Mag., 7, 529 (1962)
  22. Lagerlof KPD, Mitchell TE, Heuer AH, 'TEM of Climb-Dissociated Dislocations in Sapphire,' 40th Ann. Proc. Electron Microscopy Soc. Amer. Washington, D.C., 1982 (1982)
  23. Lagerlof KPD: Ph.D Dissertation, Case Western Reserve University, Cleveland, OH, May 1984 (1984)
  24. Cawley JD: Ph.D Dissertation, Case Western Reserve University, Cleveland, OH, May 1984 (1984)