Korean Journal of Materials Research, Vol.11, No.2, 88-93, February, 2001
Si (001) 기판에서 N2N 2 처리에 의해 형성된 에피택셜 C49- TiSi2TiSi 2 상의 열적 거동과 결정학적 특성에 관한 연구
Thermal Behavior and Crystallographic Characteristics of an Epitaxial C49- TiSi 2 Phase Formed in the Si (001) Substrate by N 2 Treatment
초록
N 2 처리에 의해 Si (001) 기판에 형성된 C49상의 구조를 갖는 에피택셜 TiSi 2 상의 열적 거동과 결정학적 특성을 X선 회절법 (XRD)과 고분해능 투과전자현미경법 (HRTEM)으로 조사하였다. 에피택결 C49?TiSi 2 상은 1000 ? C 정도의 고온에서도 안정상인 C54상으로 상변태하지 않고 형태적으로도 고온 특성이 우수하다는 것이 밝혀졌다. HRTEM 결과로부터 에피택결 TiSi 2 상과 Si 사이의 결정학적 방위관계는 (060) [001]TiSi 2 //(002) [110]Si임을 알 수 있었고 계면에서의 격자 변형에너지는 misfit 전위의 형성에 의하여 해소되는 것을 확인할 수 있었다. 또한 HRTEM상의 해석과 원자 모델링을 통하여 Si에서 에피택셜 C49-TiSi 2 상의 형성기구와 C49상의 (020) 면에 존재하는 적층결함을 고찰하였다.
The thermal behavior and the crystallographic characteristics of an epitaxial C49?TiSi 2 island formed in a Si (001) substrate by N 2 , treatment were investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found from the analyzed results that the epitaxial C49?TiSi 2 was thermally stable even at high temperature of 1000 ? C therefore did not transform into the C54-stable phase and did not deform morphologically. HRTEM results clearly showed that the epitaxial TiSi 2 phase and Si have the orientation relationship of (060)[001] TiSi 2 //(002)[110]Si, and the lattice strain energy at the interface was mostly relaxed by the formation of misfit dislocations. Furthermore, the mechanism on the formation of the epitaxial C 49?TiSi2 in Si and stacking faults lying on the (020) plane of the C49 Phase were discussed through the analysis of the HRTEM image and the atomic modeling.
Keywords:epitaxial C49-TiSi 2;Si;X-ray diffraction;high-resolution transmission electron microscopy;phase transformation
- Beyers R, Sinclair R, J. Appl. Phys., 57, 5240 (1985)
- Lakshmikumar ST, Rastogi AC, J. Vac. Sci. Technol. B, 7, 604 (1989)
- Mattheiss LF, Hensel JC, Phys. Rev. B, 39, 7754 (1989)
- Roy RA, Clevenger LA, Cabral C, Jr., Saenger HL, Brauer S, Jordan-Sweet J, Bucchignano J, Stephenson GB, Morales G, Ludwig KF, Jr., Appl. Phys. Lett., 66, 1732 (1995)
- Chou TC, Wong CY, Tu KN, J. Appl. Phys., 62, 2275 (1987)
- Catana A, Schmid PE, Heintze M, Levy F, Stadelmann P, Bonnet R, J. Appl. Phys., 67, 1820 (1990)
- Huang JY, Wu ST, Jpn. J. Appl. Phys., 38, 3660 (1999)
- Byun JS, J. Electrochem. Soc., 143(6), 1984 (1996)
- Norstrom H, Maex K, J. Vac. Sci. Technol. B, 8, 1223 (1990)
- Shenai K, J. Mater. Res., 6, 1502 (1991)
- Hemer SB, Jones KS, Gossmann HJ, Tung RT, Poate JM, Luftman HS, J. Appl. Phys., 82, 583 (1997)
- Kim YC, Kim JC, Choi JH, Park JC, Choi HM, Appl. Phys. Lett., 75, 1270 (1999)