화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.11, No.2, 88-93, February, 2001
Si (001) 기판에서 N2N 2 처리에 의해 형성된 에피택셜 C49- TiSi2TiSi 2 상의 열적 거동과 결정학적 특성에 관한 연구
Thermal Behavior and Crystallographic Characteristics of an Epitaxial C49- TiSi 2 Phase Formed in the Si (001) Substrate by N 2 Treatment
초록
N 2 처리에 의해 Si (001) 기판에 형성된 C49상의 구조를 갖는 에피택셜 TiSi 2 상의 열적 거동과 결정학적 특성을 X선 회절법 (XRD)과 고분해능 투과전자현미경법 (HRTEM)으로 조사하였다. 에피택결 C49?TiSi 2 상은 1000 ? C 정도의 고온에서도 안정상인 C54상으로 상변태하지 않고 형태적으로도 고온 특성이 우수하다는 것이 밝혀졌다. HRTEM 결과로부터 에피택결 TiSi 2 상과 Si 사이의 결정학적 방위관계는 (060) [001]TiSi 2 //(002) [110]Si임을 알 수 있었고 계면에서의 격자 변형에너지는 misfit 전위의 형성에 의하여 해소되는 것을 확인할 수 있었다. 또한 HRTEM상의 해석과 원자 모델링을 통하여 Si에서 에피택셜 C49-TiSi 2 상의 형성기구와 C49상의 (020) 면에 존재하는 적층결함을 고찰하였다.
The thermal behavior and the crystallographic characteristics of an epitaxial C49?TiSi 2 island formed in a Si (001) substrate by N 2 , treatment were investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found from the analyzed results that the epitaxial C49?TiSi 2 was thermally stable even at high temperature of 1000 ? C therefore did not transform into the C54-stable phase and did not deform morphologically. HRTEM results clearly showed that the epitaxial TiSi 2 phase and Si have the orientation relationship of (060)[001] TiSi 2 //(002)[110]Si, and the lattice strain energy at the interface was mostly relaxed by the formation of misfit dislocations. Furthermore, the mechanism on the formation of the epitaxial C 49?TiSi2 in Si and stacking faults lying on the (020) plane of the C49 Phase were discussed through the analysis of the HRTEM image and the atomic modeling.
  1. Beyers R, Sinclair R, J. Appl. Phys., 57, 5240 (1985)
  2. Lakshmikumar ST, Rastogi AC, J. Vac. Sci. Technol. B, 7, 604 (1989)
  3. Mattheiss LF, Hensel JC, Phys. Rev. B, 39, 7754 (1989)
  4. Roy RA, Clevenger LA, Cabral C, Jr., Saenger HL, Brauer S, Jordan-Sweet J, Bucchignano J, Stephenson GB, Morales G, Ludwig KF, Jr., Appl. Phys. Lett., 66, 1732 (1995)
  5. Chou TC, Wong CY, Tu KN, J. Appl. Phys., 62, 2275 (1987)
  6. Catana A, Schmid PE, Heintze M, Levy F, Stadelmann P, Bonnet R, J. Appl. Phys., 67, 1820 (1990)
  7. Huang JY, Wu ST, Jpn. J. Appl. Phys., 38, 3660 (1999)
  8. Byun JS, J. Electrochem. Soc., 143(6), 1984 (1996)
  9. Norstrom H, Maex K, J. Vac. Sci. Technol. B, 8, 1223 (1990)
  10. Shenai K, J. Mater. Res., 6, 1502 (1991)
  11. Hemer SB, Jones KS, Gossmann HJ, Tung RT, Poate JM, Luftman HS, J. Appl. Phys., 82, 583 (1997)
  12. Kim YC, Kim JC, Choi JH, Park JC, Choi HM, Appl. Phys. Lett., 75, 1270 (1999)