Korean Journal of Materials Research, Vol.11, No.1, 39-43, January, 2001
조성변화에 따른 Fe-Sm-O계 박막의 연자기적 성질
Influence of Composition on Soft Magnetic Properties of As-Deposited Fe-Sm-O Thin Films
초록
초미세결정립 Fe-Sm-O계 연자성박막을 Ar+O2혼합가스 분위기에서 산소분압을 5%로 고정하고 Sm2O3dml chip수를 변화시켜 RF magnetron sputtering 법으로 제조하였다. 가장 우수한 연자기적 특성을 보이는 Fe Sm O 박막은 포화자속밀도 18KG, 보자력 0.82 Oe, 실효투자율(0.5~100 MHz) 2,600의 연자성을 나타내었다. Fe-Sm-O계 박막의 전기비저항은 Sm-oxide의 함량이 증가할수록 증가하는 경향을 나타내었으며, Fe Sm O 박막의 전기비저항은 약 130 였다. Fe-Sm-O계 박막의 미세구조는 Sm-oxide의 함량이 적은 경우에는 a-Fe 결정상에 Sm-oxide가 석출된 형태로 나타났으나, Sm-oxide의 함량이 증가할수록 a-Fe 결정상과 Sm-oxide 비정질의 혼합구조로 변화하였다. Fe의 조성이 약72~94 at퍼센트인 Fe-Sm-O계 박막의 성능지수는 50 MHz까지 약 7~75의 값을 나타내었다.
Nanocrystalline Fe-Sm-O thin films were prepared by RF magnetron reactive sputtering method in Ar+O 2 mixed atmosphere with the O 2 content of 5%. The compositions of the thin films were changed by changing the number of Sm 2 O 3 chips. The best soft magnetic properties of the thin film with the composition of Fe 83.4 Sm 3.4 O 13.2 were saturation flux density of 18 kG, coercivity of 0.82 Oe and effective permeability about 2,600 at 0.5~100 MHz, respectively. The electrical resistivity of Fe-Sm-O thin films was increased with increasing the amount of Sm and O elements which combined each other, the electrical resistivity of Fe 83.4 Sm 3.4 O 13.2 thin film was 130μΩcm . In case of the small amount of Sm and O elements, the microstructures of Fe-Sm-O thin films showed a precipitated phase of Sm 2 O 3 on the α?Fe phase. With the increase of the amount of Sm and O elements, the microstructures of the Fe- Sm-O thin films were changed into a mixed structure of α?Fe crystal-phase and Sm-oxide amorphous phase. The Fe-Sm-O thin films with Fe content in the range of 72~94 at% exhibited the quality factor (Q = μ ′/ μ ") of 7~75 up to 50 MHz.
- Nago K, Sakakima H, Ihara K, IEEE Transl. J. Magn. Jpn., 7, 119 (1992)
- Iitake I, Shimada Y, IEEE Transl. J. Magn. Jpn., 7, 113 (1992)
- Hasegawa N, Satio M, IEEE Transl. J. Magn. Jpn., 6, 91 (1991)
- Hasegawa N, Satio M, Kojima A, Makino A, Misaki Y, Watanabe Y, IEEE Transl. J. Magn. Jpn., 6, 120 (1992)
- Hasegawa N, Satio M, J. Magn. Magn. Mater., 103, 274 (1992)
- Hasegawa N, Kataoka N, Hiraga K, Fujimori H, Mater. Trans., 33, 632 (1992)
- Huijbregtse J, Roozeboom F, Sietsma J, Donkers J, Kuiper T, Van de Riet E, J. Appl. Phys., 83(3), 1569 (1998)
- Bloemen PJHJ, Rulkens B, J. Appl. Phys., 84(12), 6778 (1998)
- Makino A, Hayakawa Y, J. Jpn. Inst. Metall., 57, 1301 (1993)
- Makino A, Hayakawa Y, Mater. Sci. Eng. A, 181-182, 1020 (1994)
- Hayakawa Y, Makino A, Nanostruct. Mater., 6, 989 (1995)
- Fujimori H, Scr. Metall. Mater., 33, 1625 (1995)
- Hayakawa Y, Hirokawa K, Makino A, IEEE Transl. J. Magn. Jpn., 9, 286 (1996)
- Hayakawa Y, Hasegawa N, Makino A, Mitani S, Fujimori H, J. Magn. Magn. Mater., 154, 175 (1996)
- Yoon TS, Cho WS, Koo ES, Li Y, Park JB, Kim CO, Korean J. Mater. Res., 10(11), 755 (2000)
- Lee HJ, Mitani S, Shima T, Fujimori H, J. Magn. Jpn., 22, 625 (1998)
- Cullity BD, 'Elements of X-ray Diffraction', Second Edition (1978), Chap.3 (1978)
- Kobayashi N, Ohnuma S, Fujimori H, Masumoto T, J. Magn. Jpn., 20, 469 (1996)
- Park JY, Kim JY, Kim KY, Han SH, Kim HJ, J. Kor. Magn. Soc., 7, 237 (1997)