화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.11, No.1, 39-43, January, 2001
조성변화에 따른 Fe-Sm-O계 박막의 연자기적 성질
Influence of Composition on Soft Magnetic Properties of As-Deposited Fe-Sm-O Thin Films
초록
초미세결정립 Fe-Sm-O계 연자성박막을 Ar+O2혼합가스 분위기에서 산소분압을 5%로 고정하고 Sm2O3dml chip수를 변화시켜 RF magnetron sputtering 법으로 제조하였다. 가장 우수한 연자기적 특성을 보이는 Fe Sm O 박막은 포화자속밀도 18KG, 보자력 0.82 Oe, 실효투자율(0.5~100 MHz) 2,600의 연자성을 나타내었다. Fe-Sm-O계 박막의 전기비저항은 Sm-oxide의 함량이 증가할수록 증가하는 경향을 나타내었으며, Fe Sm O 박막의 전기비저항은 약 130 였다. Fe-Sm-O계 박막의 미세구조는 Sm-oxide의 함량이 적은 경우에는 a-Fe 결정상에 Sm-oxide가 석출된 형태로 나타났으나, Sm-oxide의 함량이 증가할수록 a-Fe 결정상과 Sm-oxide 비정질의 혼합구조로 변화하였다. Fe의 조성이 약72~94 at퍼센트인 Fe-Sm-O계 박막의 성능지수는 50 MHz까지 약 7~75의 값을 나타내었다.
Nanocrystalline Fe-Sm-O thin films were prepared by RF magnetron reactive sputtering method in Ar+O 2 mixed atmosphere with the O 2 content of 5%. The compositions of the thin films were changed by changing the number of Sm 2 O 3 chips. The best soft magnetic properties of the thin film with the composition of Fe 83.4 Sm 3.4 O 13.2 were saturation flux density of 18 kG, coercivity of 0.82 Oe and effective permeability about 2,600 at 0.5~100 MHz, respectively. The electrical resistivity of Fe-Sm-O thin films was increased with increasing the amount of Sm and O elements which combined each other, the electrical resistivity of Fe 83.4 Sm 3.4 O 13.2 thin film was 130μΩcm . In case of the small amount of Sm and O elements, the microstructures of Fe-Sm-O thin films showed a precipitated phase of Sm 2 O 3 on the α?Fe phase. With the increase of the amount of Sm and O elements, the microstructures of the Fe- Sm-O thin films were changed into a mixed structure of α?Fe crystal-phase and Sm-oxide amorphous phase. The Fe-Sm-O thin films with Fe content in the range of 72~94 at% exhibited the quality factor (Q = μ ′/ μ ") of 7~75 up to 50 MHz.
  1. Nago K, Sakakima H, Ihara K, IEEE Transl. J. Magn. Jpn., 7, 119 (1992)
  2. Iitake I, Shimada Y, IEEE Transl. J. Magn. Jpn., 7, 113 (1992)
  3. Hasegawa N, Satio M, IEEE Transl. J. Magn. Jpn., 6, 91 (1991)
  4. Hasegawa N, Satio M, Kojima A, Makino A, Misaki Y, Watanabe Y, IEEE Transl. J. Magn. Jpn., 6, 120 (1992)
  5. Hasegawa N, Satio M, J. Magn. Magn. Mater., 103, 274 (1992)
  6. Hasegawa N, Kataoka N, Hiraga K, Fujimori H, Mater. Trans., 33, 632 (1992)
  7. Huijbregtse J, Roozeboom F, Sietsma J, Donkers J, Kuiper T, Van de Riet E, J. Appl. Phys., 83(3), 1569 (1998)
  8. Bloemen PJHJ, Rulkens B, J. Appl. Phys., 84(12), 6778 (1998)
  9. Makino A, Hayakawa Y, J. Jpn. Inst. Metall., 57, 1301 (1993)
  10. Makino A, Hayakawa Y, Mater. Sci. Eng. A, 181-182, 1020 (1994)
  11. Hayakawa Y, Makino A, Nanostruct. Mater., 6, 989 (1995)
  12. Fujimori H, Scr. Metall. Mater., 33, 1625 (1995)
  13. Hayakawa Y, Hirokawa K, Makino A, IEEE Transl. J. Magn. Jpn., 9, 286 (1996)
  14. Hayakawa Y, Hasegawa N, Makino A, Mitani S, Fujimori H, J. Magn. Magn. Mater., 154, 175 (1996)
  15. Yoon TS, Cho WS, Koo ES, Li Y, Park JB, Kim CO, Korean J. Mater. Res., 10(11), 755 (2000)
  16. Lee HJ, Mitani S, Shima T, Fujimori H, J. Magn. Jpn., 22, 625 (1998)
  17. Cullity BD, 'Elements of X-ray Diffraction', Second Edition (1978), Chap.3 (1978)
  18. Kobayashi N, Ohnuma S, Fujimori H, Masumoto T, J. Magn. Jpn., 20, 469 (1996)
  19. Park JY, Kim JY, Kim KY, Han SH, Kim HJ, J. Kor. Magn. Soc., 7, 237 (1997)