화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.10, No.8, 545-550, August, 2000
슬립주입에 의한 Y-TZP/Ce-TZP 다층복합체의 제조(I)
Fabrication of Y-TZP/Ce-TZP Multilayer Composites Using Slip Casting(I)
초록
3Y-TZP, 12Ce-TZP 및 3Y-TZP, 12Ce-TZP 현탁액의 제타포텐셜과 겉보기점도의 측정으로부터 슬립주입공정에 의한 다층복합체의 제조조건을 조사하였다. 아울러 다층복합체의 소결밀도, 미세구조, 결정상에 미치는 열처리의 영향을 검토하였다. 3Y-TZP와 12Ce-TZP 현탁액의 등전점을 pH 8부근이었으나 3Y-TZP/12Ce-TZP의 등전점은 pH8.6이었다. 현탁액은 전단속도의 증가와 더불어 점도가 감소하는 의가소성유동을 나타내었다. 15 및 20vol% 고체함량을 갖는 3Y-TZP와 3Y-TZP/12Ce-TZP 현탁액은 소량(0.3wt%)의 유기해교제의 첨가만으로 슬립주입에 적당한 유동성을 보유하였으나, 12Ce-TZP의 경우는 점도를 감소시키기 위하여 부가적인 전해질이 필요하였다. 이론밀도의 98% 이상을 보유하고 0.3~ 2.2μm 의 입경을 갖는 치밀한 다층복합체가 1500 ? C 소결로 얻어졌다.
From the zeta potential and apparent viscosity measurements of 3Y-TZP, 12Ce-TZP and 3Y-TZP / 12Ce-TZP suspension, the conditions for the preparation of mutilayer composites by slip casting processing have been examined. The influence of heat treatment on the sinteted density, microstructure and crystalline phase of multilayer composites was also studied. The isoelectric point of both 3Y-TZP and 12Ce-TZP suspensions was near pH 8and that of 3Y-TZP / 12Ce-TZP was at pH 8.6. The suspensions exhibited pseudoplastic flow, showing a decrease in viscosity with increasing shear stress. A small(0.3wt%) addition of an organic deflocculant gave 3Y-TZP and 3Y-TZP / 12Ce-TZP suspensions with 15 and 20 vol% solid contests and appropriate fluidity for slip casting but an additional electrolyte was required in 12Ce-TZP for reducing viscosity. Dense(>98% of theotetical) multilayer composites with grain size of 0.3~2.2 um were obtained after sintering at 1500도씨.
  1. Kobayashi K, Masaki T, Bull. Jpn. Ceram. Soc., 17, 427 (1982)
  2. Porter DL, Heuer AH, J. Am. Ceram. Soc., 60(3-4), 183 (1977)
  3. Clough DJ, Ceram. Eng. Sci. Proc., 6(9), 1244 (1985)
  4. Ruhle M, Claussen N, Heuer AH, Claussen N(ed.), Ruhle M(ed.), Heuer AH(ed.), Sci. Technol., 352 (1984)
  5. Sato T, Ohtaki S, Shimada M, J. Mater. Sci., 20, 1466 (1985)
  6. Sato T, Shimada M, Am. Ceram. Soc. Bull., 64(10), 1382 (1985)
  7. Winnubst AJA, Burggraaf AJ, Somiya S(ed.), Yamanoto N(ed.), Yanagida H(ed.), Sci. Technol., 39 (1988)
  8. Watanabe W, Iio S, Fukuura I, Claussen N(ed.), Ruhle M(ed.), Heuer AH(ed.), Sci. Technol., 391 (1984)
  9. Claussen N, Steeb J, J. Am. Ceram. Soc., 59(9), 457 (1976)
  10. Boch P, Chartier T, Huttepain M, J. Am. Ceram. Soc., 69(8), C191 (1986)
  11. Mistler RE, Am. Ceram. Soc. Bull., 52(11), 850 (1973)
  12. Williams JC, Mater. Sci. Technol., 173 (1976)
  13. St. Pierre PDS, Trans. Brit. Ceram. Soc., 51(4), 26 (1952)
  14. Masson CR, Whiteway SC, Collings CA, Am. Ceram. Soc. Bull., 42(12), 745 (1963)
  15. Taguchi H, Takahashi Y, Miyamoto H, Am. Ceram. Soc. Bull., 64(2), 325 (1985)
  16. Taguchi H, Takahashi Y, Miyamoto H, J. Am. Ceram. Soc., 68(10), C264 (1985)
  17. Moreno R, Requena J, Moya JS, J. Am. Ceram. Soc., 71(12), 1036 (1988)
  18. Deliso EM, Rao AS, Cannon WR, Messing GL(ed.), Mazdiyasni KS(ed.), McCauley JW(ed.), Haber RA(ed.), Ceramic Powder Science, 525 (1987)
  19. Parks GA, Chem. Rev., 65(2), 177 (1965)
  20. Deliso EM, Cannon WR, Rao AS, Somiya S(ed.), Yamanoto N(ed.), Yanagida H(ed.), Sci. Technol., 335 (1988)
  21. Long RP, Ross S, J. Colloid. Sci., 26(4), 434 (1968)
  22. Green DJ, Hannink RHJ, Swain MV, Transformation Toughened Ceramics, 220 (1989)
  23. Theunissen GSAM, Winnubst AJA, Burggraaf AJ, J. Eur. Ceram. Soc., 9, 251 (1992)
  24. Boutz MMR, Winnubst AJA, Burggraaf AJ, J. Eur. Ceram. Soc., 13, 89 (1994)
  25. Theunissen GSAM, Winnubst AJA, Burggraaf AJ, J. Mater. Sci., 27, 5057 (1992)
  26. Hwang S, Chen I, J. Am. Ceram. Soc., 73(11), 3269 (1990)
  27. Ipadhyaya DD, Bhat R, Ramanathan S, Roy SK, J. Eur. Ceram. Soc., 14, 337 (1994)