화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.10, No.1, 15-20, January, 2000
기계적인 합금화에 의한 Mg-18wt.%Ni 수소저장합금의 개발
Development of Mg-18wt.%Ni-Hydrogen-Storage Alloy by Mechanical Alloying
초록
기계적으로 합금처리한 Mg-18wt.%Ni 혼합물의 수소저장특성이 조사되었다. 1h, 3h, 그리고 6h 동안 기계적으로 합금처리한 혼합물들 중에서 6h동안 기계적으로 합금처리한 혼합물(MA 6h sample)이 가장 좋은 활성화, 수소화물 형성.분해 특성을 보인다. 수소화물 형성.분해 cycling을 시킴에 따라 Mg 2 Ni상이 형성된다. MA 6h sample은 비교적 쉽게 활성화되며, 순수한 Mg나 Mg-10wt.%Ni 합금보다 수소화물 형성속도가 높으나, Mg 2 Ni 합금보다는 수소화물 형성속도가 약간 낮다. MA 6h sample은 Mg 2 Ni 합금에 비해 낮은 수소화물 분해속도를 보이지만, 순수한 Mg나 Mg-25wt.%Ni 합금보다는 높은 수소화물 분해속도를 보인다. MA 6h sample은 순수한 Mg나 다른 합금들보다 큰 수소저장용량을 가지고 있다.
The hydrogen-storage properties of a mechanically-alloyed Mg-18wt.%Ni mixture were investigated. Among the mixtures mechanically alloyed for 1h, 3h, and 6h, the mixture mechanically alloyed for 6h(MA 6h sample) shows the best properties of activation, hydriding, and dehydriding. The Mg 2 Ni phase forms in the mechanically-alloyed Mg-18wt.%Ni mixture along with hydriding-dehydriding cycling. The MA 6h sample is relatively easily activated and has higher hydriding rate than the pure Mg, the Mg-10wt.%Ni alloy, and a little lower hydriding rate than the Mg 2 Ni alloy. The MA 6h sample lower dehydriding rate than the Mg 2 Ni alloy but higher dehydriding rate than the pure Mg and the Mg-25wt.%Ni alloy. The MA 6h sample has larger hydrogen-storage capacity than the pure Mg and the other alloys.
  1. Hydrides M, Vose, U. S. Patent 2 944/ pp.587, 1961 (1961)
  2. Reilly JJ, Wiswall RH, Inorg. Chem., 6(12), 2220 (1967)
  3. Reilly JJ, Wiswall RH, Jr., Inorg. Chem., 7(11), 2254 (1968)
  4. Douglass DL, Metall. Trans. A, 6, 2179 (1975)
  5. Douglass DL, Anderson AF, Maeland AJ, Proceedings International Symposium, 151 (1977)
  6. Mintz MH, Gavra Z, Hadari Z, J. Inorg. Nucl. Chem., 40, 765 (1978)
  7. Pezat M, Hbika A, Darriet B, Hagenmuller P, Mater. Res. Bull., 14, 377 (1979)
  8. Pezat M, Darriet B, Hagenmuller P, J. Less-Common Met., 74, 427 (1980)
  9. Wang Q, Wu J, Au M, Zhang L, Veziroglu TN, Taylor JB, Proceedings 5th World Hydrogen Energy conference, 3, 1279 (1984)
  10. Tanguy B, Soubeyroux JL, Pezat M, Portier J, Hagenmuller P, Mater. Res. Bull, 11, 1441 (1976)
  11. Eisenberg FG, Zagnoli DA, Sheridan JJ Ⅲ, J. Less-Common Met., 74, 323 (1980)
  12. Bogdanovic B, Int. J. Hydrogen Energy, 9(11), 937 (1984)
  13. Akiba E, Nomura K, Ono S, Suda S, Int. J. Hydrogen Energy, 7(10), 787 (1982)
  14. Akiba E, Nomura K, Ono S, J. Less-Comman Met., 89, 145 (1983)
  15. Boulet JM, Gerard N, J. Less-Comman Met., 89, 151 (1983)
  16. Ono S, Ishido Y, Akiba E, Jindo K, Sawada Y, Kitagawa I, Kakutani T, Veziroglu TN, Taylor JB, Proceedings 5th World Hydrogen Energy Conference, 3, 1291 (1984)
  17. Boulet JM, thesis of 3eme cycle, Universite de Dijon (1982)
  18. Song MY, Pezat M, Darriet B, Lee JY, Hagenmuller P, J. Mater. Sci, 21, 346 (1986)
  19. Pedersen AS, Kjφller J, Larsen B, Vigeholm B, Veziroglu TN, Taylor JB, Proceedings 5th world Hydrogen Energy Conference, 3, 1269 (1984)
  20. Vigeholm B, Kjφller J, Larsen B, Schrφder Pedersen A, Int. J. Hydrogen Energy, 8(10), 809 (1983)
  21. Song MY, Darriet B, Pezat M, Lee JY, Hagenmuller P, J. Less-common Met., 118, 235 (1986)