화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.10, No.1, 34-40, January, 2000
과잉 PbO에 의한 (Pb,Y) (Zr,Sn,Ti)O 3 세라믹스의 유전 및 전기장유기변형 특성
Dielectric and Field-induced Strain Behaviors due to Excess PbO in Lead Yttrium Zirconate Stannate Titanate Ceramics
초록
디지털형 압전/전왜 액츄에이터 응용을 위하여 상경계(반강유전상/강유전상) 조성인 Pb 0.94 Y 0.04 [(Zr 0 .6Sn 0 .4) 0.915 Ti 0 .085]O 3 (PYZST) 계를 택하여 과잉 PbO의 첨가량 및 소결 조건 변화에 따른 상전이 특성, 유전 특성 및 전기장 유기변형 특성을 연구하였다. 사방정 구조를 갖는 PYZST 세라믹스에서 과잉 PbO 첨가에 따른 결정구조의 변화는 거의 확인되지 않았으나, 소결 후 입자가 약간 작아지며 둥근 형태로 변화하였고 첨가량 증가에 따라 적정 소결온도는 감소하였다. 과잉 PbO의 첨가량이 증가함에 따라, 분극측정시 반강유전상이 보다 안정되는 경향을 보였고, 전계유도변형 측정시 인가전기장 제거상태에서의 변형의 형상기억성이 감소하고 디지털형 변형곡선 특성이 강화되었다. 또한 최대 유전상수와 전계 유기변형량은 감소하였으나 반면 상전이(반강유전상 ↔ 강유전상) 전기장 및 비저항은 증가하는 경향을 나타냈다. 이러한 결과는 과잉으로 첨가된 PbO에 의한 격자 결함반응 및 분역벽 이동 거동 가능성과 연관시켜 설명하였다.
The Pb 0.94 Y 0.04 [(Zr 0.6 Sn 0.4 ) 0.915 Ti 0.085 ]O 3 ceramics which corresponded to the antiferroelectric-ferroelectric phase boundary composition were prepared for digital-type-piezoelectric/electrostrictive device application. Their dielectric, field-induced polarization (P) and strain (X) behaviors were studied with variations in sintering condition and excess PbO content. The orthorhombic structure of specimens was hardly affected either by excess PbO addition or sintering temperature. With increasing excess PbO content, grains tended to be smaller and rounded ones, and the optimum sintering temperature was lowered. Excess PbO addition stabilized the antiferroelectric phase of the specimen effectively, which was confirmed by P-E and X-E analyses. Also the digital-type-strain character was found to be enhanced despite of slight increase in phase transition (AFE-FE) field and electrical resistivity, and decrease in maximum strain. These results were explained in terms of possible lattice defects and domain wall motion.
  1. Uchino K, IEEE International Symposium on Applications of Ferroelectrics, 610 (1986)
  2. Markowski K, Park SE, Yoshikawa S, Cross LE, J. Am. Ceram. Soc., 79, 3297 (1996)
  3. Hagimura A, Uchino K, Ferroelectrics, 93, 373 (1989)
  4. Pan WY, Dam CQ, Zhang QM, Cross LE, J. Appl. Phys., 66, 6014 (1989)
  5. Uchino K, MRS International Meeting on Advanced Materials, 9, 489 (1989)
  6. Uchino K, Nomura S, Cross LE, Newham RE, Jang SJ, J. Mater. Sci., 16, 569 (1981)
  7. Zhang Q, Pan W, Bhalla A, Cross LE, J. Am. Ceram. Soc., 72(4), 599 (1989)
  8. Kato T, Yamada N, Imai A, Ferroelectrics, 134, 151 (1992)
  9. Berlincourt D, Krueger HH, Jaffe B, J. Phys. Chem. Solids, 25, 659 (1964)
  10. Pan W, Dam CQ, Zhang QM, Cross LE, J. Appl. Phys., 66(12), 6014 (1989)
  11. Shebanov L, Kusnetsov M, Sternberg A, J. Appl. Phys., 76(7), 4301 (1994)
  12. Takashi S, Ferroelectrics, 91, 39 (1989)
  13. Kingon AI, Clark JB, J. Am. Ceram. Soc., 66, 256 (1983)
  14. Lejeune M, Boilot JP, Mat. Res. Bull., 20, 493 (1985)
  15. Gupta TK, Bechtold JH, Kuznickie RC, Cadoff LH, Rossing BR, J. Mater. Sci., 12, 2421 (1977)
  16. Tsuge A, Kudo H, Komeya K, J. Am. Ceram. Soc., 57, 424 (1978)
  17. Proszak W, Ferroelectrics, 81, 347 (1988)
  18. Nam YW, Yoon KH, Mater. Res. Bull., 33(2), 331 (1998)
  19. Webster AH, Weston TB, Bright NFH, J. Am. Ceram. Soc., 50(9), 490 (1967)
  20. Atkin RB, Fulrath RM, J. Am. Ceram. Soc., 54(5), 265 (1971)
  21. Gupta SM, Kulkarni AR, J. Mater. Res., 10(4), 953 (1995)
  22. Saha D, Sen A, Maiti HS, J. Mater. Res., 11(4), 932 (1996)
  23. Martirena HT, Burfoot JC, J. Phys. C : Solid State Phys., 7, 3182 (1974)
  24. Dih JJ, Fulrath RM, J. Am. Ceram. Soc., 61(9-10), 448 (1978)