화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.11, 1062-1068, November, 1999
TiOSO 4 및 Ti (So 4)2 용액으로부터 촉매 담체용 TiO 2 합성에 관한 연
A Study on the Synthesis of TiO 2 for Catalyst Carrier from TiOSO 4 and \textrm{TiO(\textrm{SO}_4)_2 Solutions
초록
고정원으로부터 배출되는 질소산화물의 저감 기술 중에서 선택적 촉매 환원법(SCR법)은 가장 경제적이고 효율적인 방법으로 알려져 있다. 이 SCR 촉매의 탈질능을 향상시키기 위하여, TiOSO 4 및 Ti( SO 4 ) 2 용액으로부터 비표면적이 넓은 TiO 2 의 비표면적 및 결정구조에 미치는 영향과 이들의 상관관계에 대하여 조사하였다. TiOSO 4 용액으로부터 합성한 TiO 2 의 최대 비표면적은 382\m 2 /g이었고, Ti( SO 4 ) 2 용액으로부터 합성한 TiO 2 의 최대 비표면적은 335\m 2 /g이었으며, TiO 2 는 비정질 형태의 결정구조를 보였다. 하소처리에 의해 비정질 TiO 2 는 결정화되었고, 결정 중에 함유되어 있는 불순물은 TiO 2 의 결정화를 억제하였다.
SCR(Selective Catalytic Reduction) mothod has been brodly applied for the removal of nitrogen oxides in the flue gas from stationary sources because of the high efficeiency and the economic effect. To improve a denigrification efficiency of the SCR catalyst, we tried to prepare a TiO2 carrier with very large specific surface area from TiOSO4 and Ti(SO4)2 solutions. In this work, the effects of starting materials, conditions of neutralization and temperature of calconation on the specific surface area and the crystal structure of synthesized TiO2 have been investigated. The maximum value of specific surface area of TiO2 synthesized from TiOSO4 solution was 382 m2/g, and that of TiO2 synthesized from Ti(SO4)2 solution was 335m2 /g, and the synthesized TiO2 was amorphous. Thesynthesized TiO2 was crystallized by calcining, and the impurtities in TiO2 crystal constriceted the crystallization of TiO2.
  1. 안홍식, 고명숙, 김부한, Power engineering, 7(4), 125 (1996)
  2. 남인식, 화학공업과 기술, 6(2), 31 (1988)
  3. Janssen F, Mejjer R, Catalysis today, 16, 157 (1993)
  4. Inomata M, Miyamoto A, Murakami Y, J. Catal., 62, 140 (1980)
  5. Nam IS, Eldrldge JW, Kittrell JR, Ind. Eng. Chem. Prod. Res. Dev., 25(2), 186 (1986)
  6. Nam IS, Eldrldge JW, Kittrell JR, Ind. Eng. Chem. Prod. Res. Dev., 25(2), 192 (1986)
  7. Shlkada T, Fujimoto K, Kunugi T, Tominaga H, Ind. Eng. Chem. Prod. Res. Dev., 20(1), 91 (1981)
  8. Klimsch RL, Talyor KC, Ind. Eng. Chem. Prod. Res. Dev., 14(1), 26 (1975)
  9. Williamson WB, Lunsford JH, J. Phys. Chem., 80(24), 2664 (1976)
  10. Iizuka T, Lunsford JH, J. Mole. Catal., 8, 391 (1980)
  11. Matsuda S, Kato A, Appli. Catal., 8, 149 (1983)
  12. Mamchik AI, Kalinin SV, Vertegel AA, Chem Mater., 10, 3548 (1998)
  13. Iida Y, Ozaki S, J. Am. Ceram. Soc., 44, 120 (1961)
  14. Weiser HB, Milligan WO, Cook EL, J. Phys. Chem., 45, 1227 (1941)
  15. Mintova S, Valtchev V, Angelova S, Konstantinov L, Zeolites, 18, 269 (1997)
  16. Suzuki K, Makino A, Mater. Sci. Eng. A, 179-180, 501 (1994)