Korean Journal of Materials Research, Vol.9, No.11, 1075-1082, November, 1999
고체산화물 연료전지용 공기극재료로써의 LSM-YSZ 전극 연구
Investigations of LSM-YSZ as Air Electrode Materials for Solid Oxide Fuel Cells
초록
50/50 vol% LSM-YSZ의 복합공기극(LSM= La 1?x Sr x MnO 3 (0 ≤ x ≤ 0.5))이 콜로이드 증착법에 의해 준비으며 주사전자현미경과 임피던스 분석기에 의해 연구되어졌다. 재현성있는 임피던스 스펙트럼들이 LSM-YSZ/YSZ/LSM-YSZ로 구성된 향상된 셀을 사용함으로써 얻어졌다. 이러한 셀들의 임피던스 스펙트럼들은 작동온도에 강하게 영향을 받았으며, 가장 안정된 조건은 900 ? C 에서 도달되어졌다. 900 ? C 에서 공기//공기 셀에 대해 측정된 전형적인 임피던스 스펙트럼들은 2개의 불완전한 호(depressed arc)로 구성되었다. LSM전극에 대한 YSZ의 첨가는 LSM-YSZ 공기극의 저항 감소를 가져왔으며, 전해질 표면의 불순물의 영향을 제거하기 위한 연마는 공기극 저항을 더욱 감소시켰다. 또한 촉매층(Ni 혹은 Sr)을 가진 LSM-YSZ 전극은 촉매층이 없는 경우에 비해 공기극 저항의 감소를 가져왔다. LSM-YSZ 공기극 저항은 전극조성, 전해질의 형태, 인가 전류에 의해 영향을 받았다.
Composite air electrodes of 50/50 vol% LSM- YSZ where LSM = La 1?x Sr x MnO 3 (0 ≤ x ≤ 0.5) were prepared by colloidal deposition technique. The electrodes were then examined by scanning electron microscopy (SEM) and studied by ac impedance spectroscopy in order to improve the performance of a solid oxide fuel cell (SOFC). Reproducible impedance spectra were confirmed by using the improved cell, consisting of LSM- YSZ/YSZ/LSM-YSZ. These spectra were a strong function of operating temperature and the stable conditions for the cells were typically reached at 900 ? C . The typical spectra measured for an air//air cell at 900 ? C were composed of two arcs. Addition of YSZ to the LSM electrode led to a pronounced decrease in cathodic resistivity of LSM-YSZ composite electrodes. Polishing the electrolyte surface to eliminate the influences of surface impurities could further reduce cathode resistivity. The cathodic resistivity of the LSM-YSZ electrodes with catalytic interlayer (Ni or Sr) was much smaller than that of LSM-YSZ electrodes without catalytic interlayer. In addition, the cathodic resistivity of the LSM-YSZ electrodes was a strong function of composition of electrode materials, the electrolyte geometry, and applied current.
- Souza S, Visco SJ, De Jonghe LC, Solid State Ionics, 98, 57 (1997)
- Juhl M, Primdahl S, Manon C, Mogensen M, J. Power Sources, 61, 173 (1996)
- Sasaki K, Wurth JP, Gschwend R, Godickemeier M, Gauckler LJ, J. Electrochem. Soc., 143(2), 530 (1996)
- Kenjo T, Nishiya M, Solid State Ionics, 57, 295 (1992)
- Boukamp BA, Solid State Ionics, 20, 31 (1986)
- Wang SZ, Jiang Y, Zhang YH, Yan JW, Li WZ, J. Electrochem. Soc., 145(6), 1932 (1998)
- Chick LA, Pederson LR, Maupin GD, Bates JL,Thomas LE, Exarhos GJ, Mat. Lett., 10(12), 6 (1990)
- Østergard MLT, Mogensen M, Electrochem. Acta, 38(14), 2105 (1993)
- Lee HY, Cho WS, Oh SM, Wiemhofer HD, Gopel W, J. Electrochem. Soc., 142(8), 2659 (1995)
- Jiang Y, Wang SZ, Zhang YH, Yan JW, Li WZ, J. Electrochem. Soc., 145(2), 373 (1998)
- Hammouche A, Siebert E, Hammon A, Kleitz M, Caneiro A, J. Electrochem. Soc., 138(5), 1212 (1991)
- Hahn A, Landes H, Stimming U(ed.), Singhal SC(ed.), Tagawa H(ed.), Lehnert W(ed.), Proceedings 5th Intern. Symp. SOFC, 595 (1997)
- Shibuya Y, Nagamoto H, Proceedings 5th Intern. Symp. SOFC, 510 (1997)
- Ioroi T, Hara T, Uchimoto Y, Ogumi Z, Takehara Z, J. Electrochem. Soc., 145(6), 1999 (1999)
- Siebert E, Hammouche A, Kleitz M, Electrochim. Acta, 40(11), 1741 (1995)
- Tsai TP, Barnett SA, J. Electrochem. Soc., 145(5), 1696 (1998)
- Bae JM, Steele BCH, Solid State Ion., 106(3-4), 247 (1998)
- Fukunaga H, Ihara M, Sakaki K, Yamada K, Solid State Ion., 86-88, 1179 (1996)
- Kenjo T, Wada K, Solid State Ion., 67(3-4), 249 (1994)
- Tsukuda H, Yamashita A, Bossel U(ed.), Proceedings 1st European SOFC Forum (1994)