화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.11, 1075-1082, November, 1999
고체산화물 연료전지용 공기극재료로써의 LSM-YSZ 전극 연구
Investigations of LSM-YSZ as Air Electrode Materials for Solid Oxide Fuel Cells
초록
50/50 vol% LSM-YSZ의 복합공기극(LSM= La 1?x Sr x MnO 3 (0 ≤ x ≤ 0.5))이 콜로이드 증착법에 의해 준비으며 주사전자현미경과 임피던스 분석기에 의해 연구되어졌다. 재현성있는 임피던스 스펙트럼들이 LSM-YSZ/YSZ/LSM-YSZ로 구성된 향상된 셀을 사용함으로써 얻어졌다. 이러한 셀들의 임피던스 스펙트럼들은 작동온도에 강하게 영향을 받았으며, 가장 안정된 조건은 900 ? C 에서 도달되어졌다. 900 ? C 에서 공기//공기 셀에 대해 측정된 전형적인 임피던스 스펙트럼들은 2개의 불완전한 호(depressed arc)로 구성되었다. LSM전극에 대한 YSZ의 첨가는 LSM-YSZ 공기극의 저항 감소를 가져왔으며, 전해질 표면의 불순물의 영향을 제거하기 위한 연마는 공기극 저항을 더욱 감소시켰다. 또한 촉매층(Ni 혹은 Sr)을 가진 LSM-YSZ 전극은 촉매층이 없는 경우에 비해 공기극 저항의 감소를 가져왔다. LSM-YSZ 공기극 저항은 전극조성, 전해질의 형태, 인가 전류에 의해 영향을 받았다.
Composite air electrodes of 50/50 vol% LSM- YSZ where LSM = La 1?x Sr x MnO 3 (0 ≤ x ≤ 0.5) were prepared by colloidal deposition technique. The electrodes were then examined by scanning electron microscopy (SEM) and studied by ac impedance spectroscopy in order to improve the performance of a solid oxide fuel cell (SOFC). Reproducible impedance spectra were confirmed by using the improved cell, consisting of LSM- YSZ/YSZ/LSM-YSZ. These spectra were a strong function of operating temperature and the stable conditions for the cells were typically reached at 900 ? C . The typical spectra measured for an air//air cell at 900 ? C were composed of two arcs. Addition of YSZ to the LSM electrode led to a pronounced decrease in cathodic resistivity of LSM-YSZ composite electrodes. Polishing the electrolyte surface to eliminate the influences of surface impurities could further reduce cathode resistivity. The cathodic resistivity of the LSM-YSZ electrodes with catalytic interlayer (Ni or Sr) was much smaller than that of LSM-YSZ electrodes without catalytic interlayer. In addition, the cathodic resistivity of the LSM-YSZ electrodes was a strong function of composition of electrode materials, the electrolyte geometry, and applied current.
  1. Souza S, Visco SJ, De Jonghe LC, Solid State Ionics, 98, 57 (1997)
  2. Juhl M, Primdahl S, Manon C, Mogensen M, J. Power Sources, 61, 173 (1996)
  3. Sasaki K, Wurth JP, Gschwend R, Godickemeier M, Gauckler LJ, J. Electrochem. Soc., 143(2), 530 (1996)
  4. Kenjo T, Nishiya M, Solid State Ionics, 57, 295 (1992)
  5. Boukamp BA, Solid State Ionics, 20, 31 (1986)
  6. Wang SZ, Jiang Y, Zhang YH, Yan JW, Li WZ, J. Electrochem. Soc., 145(6), 1932 (1998)
  7. Chick LA, Pederson LR, Maupin GD, Bates JL,Thomas LE, Exarhos GJ, Mat. Lett., 10(12), 6 (1990)
  8. Østergard MLT, Mogensen M, Electrochem. Acta, 38(14), 2105 (1993)
  9. Lee HY, Cho WS, Oh SM, Wiemhofer HD, Gopel W, J. Electrochem. Soc., 142(8), 2659 (1995)
  10. Jiang Y, Wang SZ, Zhang YH, Yan JW, Li WZ, J. Electrochem. Soc., 145(2), 373 (1998)
  11. Hammouche A, Siebert E, Hammon A, Kleitz M, Caneiro A, J. Electrochem. Soc., 138(5), 1212 (1991)
  12. Hahn A, Landes H, Stimming U(ed.), Singhal SC(ed.), Tagawa H(ed.), Lehnert W(ed.), Proceedings 5th Intern. Symp. SOFC, 595 (1997)
  13. Shibuya Y, Nagamoto H, Proceedings 5th Intern. Symp. SOFC, 510 (1997)
  14. Ioroi T, Hara T, Uchimoto Y, Ogumi Z, Takehara Z, J. Electrochem. Soc., 145(6), 1999 (1999)
  15. Siebert E, Hammouche A, Kleitz M, Electrochim. Acta, 40(11), 1741 (1995)
  16. Tsai TP, Barnett SA, J. Electrochem. Soc., 145(5), 1696 (1998)
  17. Bae JM, Steele BCH, Solid State Ion., 106(3-4), 247 (1998)
  18. Fukunaga H, Ihara M, Sakaki K, Yamada K, Solid State Ion., 86-88, 1179 (1996)
  19. Kenjo T, Wada K, Solid State Ion., 67(3-4), 249 (1994)
  20. Tsukuda H, Yamashita A, Bossel U(ed.), Proceedings 1st European SOFC Forum (1994)