화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.11, 1129-1136, November, 1999
고밀도 플라즈마 CVD 방법에 의한 TiN barrier metal 형성과 특성
Characteristics of TiN Barrier Metal Prepared by High Density Plasma CVD Method
초록
TEMAT precursor를 사용하여 다양한 증착 조건으로 ICP-CVD 방법으로 Si(100) 기판 위에 TiN 박막을 형성하였다. 형성된 TiN 박막의 결정상, 미세구조, 그리고 전기적 특성은 XRD, XPS, HRTEM, 그리고 전기적 측정으로 특성을 조사하였다. BI 구조를 갖는 다결정 TiN 박막은 기판의 온도가 200 ? C 이상의 온도에서 형성되었다. TiN(111) 박막은 기판의 온도가 300 ? C 에서 TEMAT, N 2 , 그리고 Ar 가스의 유량이 10, 5, 그리고 5sccm으로 반응로에 주입할 때 형성되었다. TiN/Si(100) 계면은 TiN과 SiO 2 사이에 계면반응이 없었으며 평탄하였다. 기판의 온도가 500 ? C 에서 형성된 TiN 박막의 비저항, carrier 농도와 이동도는 21 μΩ cm, 9.5 ×10 18 cm ?3 와 462.6cm 2 /Vs으로 주어졌다.
TIN films were prepared on Si(100) substrate by ICP-CVD(inductive1y coupled plasma enhanced chemical vapor deposition) using TEMAT(tetrakis ethylmethamido titanium : Ti [N(CH) 3 C 2 H 5 ] 4 ) precursor at various deposition conditions. Phase, microstructure, and the electrical properties of TIN films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM) and electrical measurements. Polycrystalline TiN films with B1 structure were grown at temperatures over 200 ? C . Preferentially oriented along TiN(111) films were obtained at temperatures over 300 ? C with the flow rates of 10, 5, and 5 sccm for TEMAT, N 2 and Ar gas. The TiN/Si(100) interface was flat and no chemical reaction between TIN and SiO 2 was found. The resistivity, carrier concentration and the carrier mobility for the TiN sample prepared at 500 ? C are 21 μΩ cm, 9.5 ×10 18 cm ?3 and 462.6cm 2 /Vs, respectively.
  1. Maeda T, Nakayama T, Shima S, Matsunaga J, IEEE Trans. Electron Device, ED-34, 599 (1987)
  2. Suni I, Biomberg M, Sarrilahti J, J. Vac. Sci. Technol., A3, 2233 (1985)
  3. Paranipe A, IslamRaja M, J. Vac. Technol., B13, 2105 (1995)
  4. Kishida T, Tokunaga M, Kubota H, Yokoshi M, Hara T, Physica B, 239, 50 (1997)
  5. Weber A, Klages CP, Gross ME, Charatan RM, Brown WL, J. Electrochem. Soc., 142(6), L79 (1995)
  6. Fiordalice RW, Hegde RI, Kawasaki H, J. Electrochem. Soc., 143(6), 2059 (1996)
  7. Hegde RI, Fiordalic RW, Travis EO,Tobin PJ, J. Vac. Sci. Technol., B11, 1287 (1993)
  8. Rie KT, Gebauer A, Mater. Sci. Eng, A129, 61 (1991)
  9. Taschner C, Bartsch K, Leonhardt A, Surf. Coat. Technol., 59, 207 (1993)
  10. Chang TS, Wang WC, Wang LP, Hwang JC, Huang FS, J. Appl. Phys., 75, 7847 (1994)
  11. Weber A, Nikulski R, Klages CP, Gross ME, Brown WL, Dons E, Charatan RM, J. Electrochem. Soc., 141(3), 849 (1994)
  12. Kim JS, Lee EJ, Baek JT, Lee WJ, Thin Solid Films, 305(1-2), 103 (1997)
  13. Sherman A, J. Electrochem. Soc., 137, 1892 (1990)
  14. Silvestre AJ, Conde O, Vilar R, Jeandin M, J. Mater. Sci., 29(2), 404 (1994)
  15. Hillman JT, Rice MJ, Studiner DW, Foster RF, IEEE, 246 (1992)
  16. Ohto K, Ueno K, Tsunenari K, Numajiri K, Okamura M, Jinba H, Mater. Res. Soc., 151 (1994)
  17. Shin HK, Shin HJ, Lee JG, Kang SW, Ahn BT, Chem. Mater., 9, 76 (1997)
  18. 전병혁, 김종석, 이원종, 한국재료학회지, 5, 552 (1995)
  19. Lee CJ, Sung YK, J. Electronic Materials, 22, 717 (1993)
  20. Kamgar A, Baiocchi FA, Emerson AB, Sheng TT, Vasile MJ, J. Appl. Phys., 66, 2395 (1989)
  21. 최치규, 강민성, 박병호, 염병렬, 서경수, 이종덕, 김건호, 이정용, 한국진공학회지, 6, 255 (1997)
  22. Min JS, Son YW, Kang WG, Chun SS, Kang SW, Jpn. J. Appl. Phys., 37, 4999 (1998)
  23. Boumerzoug M, Boudreau M, Mascher P, Plasma Chem. Plasma Process., 17(2), 181 (1997)