화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.9, 932-936, September, 1999
O 2 및 H 2 O 를 산화제로 하는 NH 3 / O 2 산화의 성장모델 제안
A Proposal to Growth Model of NH 3 / O 2 Oxidation with species of O 2 and H 2 O
E-mail:
초록
4NH(sub)3+ 3O 2 ? 2N 2 + 6H 2 O 의 화학반응식을 가지며 O 2 및 H 2 O를 산화제로 하는 NH 3 / O 2 산화의 성장모델을 세웠으며, 그 결과 Fick의 제 1 법칙을 기초로 하는 건식 및 습식 산화메카니즘으로 이해되는 Deal-Grove의 산화막 성장모델과 유사한 결과가 도출되었다. 이 성장모델에 의하면 산화제 O 2 및 H 2 O가 상호보완적으로 산화에 영향을 미치므로 산화온도 뿐 아니라 NH 3 /O 2 의 유량비도 산화율을 결정한다. rapid thermal processing(RTP)에 의한 산화막 성장실험으로 본 연구에서 제안하는 성장모델을 확인하였으며, NH 3 분자의 분해에 의해 발생하는 N 원자의 산화막 내부확산을 secondary ion mass spectroscopy(SIMS)로 확인하였으며, Auger electron spectroscopy (AES) 측정결과 N 원자의 존재는 무시할만한 수준이었다.
The growth model of NH3/O2, oxidation, in which the equation of chemical reaction is 4NH + 3O2-->2N2 + 6H2 O and oxidizing species are O2 and H2O molecules, was established and led to the similar result of the model of Deal-Grove which explains the mechanism of dry and wet doxdation on the basis of Fick's 1'st law. The flow rate of NH3/O2 determines the oxidation rate, since the oxidizing species, O2 and H2O, affect complementarily the growth rate in NH3/O2 oxidation. The propesed growth model in this work was confirmed with the oxidation experiment by the rapid thermal processing(RTP) system and the difusion into the inner oxide film of nitrogen generated by decomposition of NH3 molecules was ascertained in secondary ion mass spectroscopy(SIMS) and in Auger electron spectroscopy (AES) measurement it was regarded to be negligible.
  1. Deal BE, Mackenna EL, Castro PL, J. Electrochem. Soc., 116, 997 (1969)
  2. Naito MY, Homma H, Momma N, Solid-State Electronics, 29, 885 (1986)
  3. Krauter G, Schumacher A, Gosele U, Sensors. Actuators, A70, 271 (1998)
  4. Takagi H, Maeda R, Ryong T, Suga T, Sensors. Actuators, A70, 164 (1998)
  5. Tanaka K, Takata E, Ohwada K, Sensors. Actuators, A69, 199 (1998)
  6. Shiraki H, Jpn. J. Appl. Phys, 14, 747 (1975)
  7. Shiraki H, Jpn. J. Appl. Phys, 15, 1 (1976)
  8. Wei L, Yuan-sen X, Yang-shu Z, 173rd Meet. Electrochem. Soc. on May, 1998, 103 (1998)
  9. Huang JG, Jccodine RJ, J. Electrochem. Soc., 140, L15 (1993)
  10. Lange P, Bernt H, Hartmannsgruber E, Naumann F, J. Electrochem. Soc., 141(1), 259 (1994)
  11. Chao TS, Chen WH, Sun SC, J. Electrochem. Soc., 140, 2905 (1993)
  12. Ohmi K, Iwamoto T, Yabune T, Miyake T, Ohmi T, Int. Conf. Solid State Devices and Materials, 1995, 258 (1995)
  13. Tseng YC, Shono K, Jpn. J. Appl. Phys., 28, L329 (1989)
  14. Tseng YC, Shono K, Jpn. J. Appl. Phys., 30, L222 (1991)
  15. Kim YC, Kim CK, JTC-CSCC, 92, 214 (1992)
  16. Kim YC, Kim CK, ICEC, 92, 1199 (1992)
  17. 김영조, 한국진공학회지, 7(2), 82 (1989)
  18. Deal BE, Grove AS, Jpn. J. Appl. Phys., 36, 3770 (1965)
  19. 김영조, 김철주, 한국재교학회지, 3(4), 403 (1993)