화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.4, 667-676, April, 2015
Extraction of copper from copper slag: Mineralogical insights, physical beneficiation and bioleaching studies
E-mail:
Copper slag was subjected to in-depth mineralogical characterization by integrated instrumental techniques and evaluated for the efficacy of physical beneficiation and mixed meso-acidophilic bioleaching tests towards recovery of copper. Point-to-point mineral chemistry of the copper slag is discussed in detail to give better insight into the association of copper in slag. Characterization studies of the representative sample revealed the presence of fayalite and magnetite along with metallic copper disseminated within the iron and silicate phases. Physical beneficiation of the feed slag (~0.6% Cu) in a 2 L working volume flotation cell using sodium isopropyl xanthate resulted in Cu beneficiation up to 2-4% and final recovery within 42-46%. On the other hand, a mixed meso-acidophilic bacterial consortium comprised of a group of iron and/or sulfur oxidizing bacteria resulted in enhanced recovery of Cu (~92-96%) from the slag sample. SEM characterization of the bioleached slag residue also showed massive coagulated texture with severe weathered structures. FE-SEM elemental mapping with EDS analysis indicated that the bioleached residues were devoid of copper.
  1. Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK, Hydrometallurgy, 125-126, 157 (2012)
  2. Panda S, Sarangi CK, Pradhan N, Subbaiah T, Sukla LB, Mishra BK, Bhatoa GL, Prasad MSR, Ray SK, Korean J. Chem. Eng., 26, 781 (2012)
  3. Shi S, Resour. Conserv. Recycl., 52, 1115 (2008)
  4. Liu X, Zhang N, Waste Manage. Res., 29, 1053 (2011)
  5. Gorai B, Jana RK, Premchand, Resour. Conserv. Recycl., 39, 299 (2003)
  6. Anand S, Rao PK, Jena PK, Hydrometallurgy, 5, 355 (1980)
  7. Banza AN, Gock E, Kongolo E, Hydrometallurgy, 67, 63 (2003)
  8. Bruckard WJ, Somerville M, Hao F, Miner. Eng., 17(4), 495 (2004)
  9. Deng T, Ling Y, Waste Manage. Res., 25, 440 (2007)
  10. Altundogan HS, Boyrazli M, Tumen F, Miner. Eng., 17(3), 465 (2004)
  11. Arslan C, Arslan F, Hydrometallurgy, 67, 1 (2002)
  12. Esther J, Panda S, Behera SK, Sukla LB, Pradhan N, Mishra BK, Bioresour. Technol., 146, 762 (2013)
  13. Panda S, Parhi PK, Nayak BD, Pradhan N, Mohapatra UB, Sukla LB, Bioresour. Technol., 130, 332 (2013)
  14. Ilyas S, Lee JC, Chi R, Hydrometallurgy, 131-132, 138 (2013)
  15. Yang T, Xu Z, Wen J, Yang L, Hydrometallurgy, 97, 29 (2009)
  16. Krebs W, Bachofen R, Brandl H, Hydrometallurgy, 59, 283 (2001)
  17. Wang QH, Yang J, Wang Q, Wu TJ, J. Hazard. Mater., 162(2-3), 812 (2009)
  18. Qu Y, Lian B, Mo B, Liu C, Hydrometallurgy, 136, 71 (2013)
  19. Rudnik E, Nikiel M, Hydrometallurgy, 89, 61 (2007)
  20. Mishra S, Panda PP, Pradhan N, Satapathy D, Subudhi U, Biswal SK, Mishra BK, Fuel, 117, 415 (2014)
  21. Kumar RN, Nagendran R, J. Hazard. Mater., 169(1-3), 1119 (2009)
  22. Panda S, Parhi PK, Pradhan N, Mohapatra UB, Sukla LB, Park KH, Hydrometallurgy, 121-124, 116 (2012)
  23. Panda S, Rout PC, Sarangi CK, Mishra S, Pradhan N, Mohapatra U, Subbaiah T, Sukla LB, Mishra BK, Korean J. Chem. Eng., 31(3), 452 (2014)
  24. Das B, Prakash S, Angadi SK, Reddy PSR, Mishra BK, Report No. T/MP/647/March/2008, IMMT, Bhubaneswar, an Internal Report. (2008)
  25. Fu B, Zhou H, Zhang R, Qiu G, Int. Biodeter. Biodegrad., 62, 109 (2008)
  26. Silverman MP, Lundgren DG, J. Bacteriol., 77, 642 (1959)
  27. Panda S, Pradhan N, Mohapatra UB, Panda SK, Rath SS, Nayak BD, Rao DS, Sukla LB, Mishra BK, Front. Env. Sci. Eng., 7, 281 (2013)
  28. Sand W, Gehrke T, Jozsa PG, Schippers A, Hydrometallurgy, 59, 159 (2001)
  29. Tributsch H, Hydrometallurgy, 59, 177 (2001)
  30. Carranza F, Romero R, Mazuelos A, Iglesias N, Forcat O, Hydrometallurgy, 97, 39 (2009)
  31. Zhao HB, Wang J, Hu MH, Qin WQ, Zhang YS, Qiu GZ, Bioresour. Technol., 149, 71 (2013)
  32. Vestola EA, Kuusenaho MK, Narhi HM, Tuovinen OH, Puhakka JA, Kaksonen JJAH, Hydrometallurgy, 103, 74 (2009)