화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.4, 731-742, April, 2015
Microscopical characterizations of nanofiltration membranes for the removal of nickel ions from aqueous solution
E-mail:
The nanofiltration (NF) process is electrostatically governed and the surface free energy plays a key role in the separation of particulates, macromolecules, and dissolved ionic species. Streaming potential measurement and the surface charge mapping by Kelvin probe atomic force mircoscopy (AFM) have been carried out. Forces of interaction near the surface of nanofiltration membranes were further studied by a force spectroscopy using atomic force microscopy. The two membranes used are more negatively charged at high pH values; hence the higher the solution chemistry, the higher and faster will be adhesion of ions on the surface of the nanofiltration membranes. It was observed that the three acquired signals from non-contact AFM (contact potential difference, amplitude and phase) were rigorously connected to the surface structure of the nanofiltration membranes. In addition to the surface structure (roughness), electrostatic interactions can also enhance initial particle adhesion to surfaces of nanofiltration membranes. The performance of the NF membranes was further investigated for the removal of nickel ions from aqueous solution, and the results were correlated to the mechanical responses of the nanofiltration membranes obtained from AFM and the streaming potential measurement.
  1. Bowen RW, Doneva TA, Stoton AG, Colloids Surf. A: Physicochem. Eng. Asp., 201, 73 (2002)
  2. Serrano PT, Yiacoumi S, Tsouris C, J. Chem. Phys., 125, 1 (2006)
  3. Huisman IH, Tragardh G, Tragardh C, Pihlajamaki A, J. Membr. Sci., 147(2), 187 (1998)
  4. Childress AE, Elimelech M, Environ. Sci. Technol., 34, 3710 (2000)
  5. Ariza MJ, Benavente J, J. Membr. Sci., 190(1), 119 (2001)
  6. Buksek H, Luxbacher T, Petrinic I, Acta Chim. Slovenica, 57, 700 (2010)
  7. Tiraferri A, Elimelech M, J. Membr. Sci., 389, 499 (2012)
  8. Shim Y, Lee HJ, Lee S, Moon SH, Cho J, Environ. Sci. Technol., 36, 3864 (2002)
  9. Childress AE, Elimelech M, J. Membr. Sci., 119(2), 253 (1996)
  10. Brant JA, Childress AE, J. Membr. Sci., 203(1-2), 257 (2002)
  11. Kaminski S, Mroginski MA, J. Phys. Chem. B, 114(50), 16677 (2010)
  12. Wang L, Molecular dynamics simulations of liquid transport through nanofiltration membranes, Doctoral dissertation, McMaster University, Ontario, Canada (2012). (2012)
  13. Renou R, Ghoufi A, Szymczyk A, Zhu H, Neyt JC, Malfreyt P, J. Phys. Chem. C, 117, 11017 (2013)
  14. Vrijenhoek EM, Hong S, Elimelech M, J. Membr. Sci., 118, 115 (2001)
  15. Song W, Ravindran V, Koel BE, Pirbazari M, J. Membr. Sci., 241(1), 143 (2004)
  16. Freger V, Langmuir, 19(11), 4791 (2003)
  17. Brant JA, Johnson KM, Childress AE, J. Membr. Sci., 276(1-2), 286 (2006)
  18. Akbari A, Homayoonfal M, Jabbari V, Water Sci. Technol., 64, 2404 (2011)
  19. Dipankar N, Lun TK, Chung HC, Jung CC, Chyu RR, Che CY, Shen CC, Hwa WT, Desalination, 234, 344 (2008)
  20. Schafer AI, Pihlajamaki A, Fane AG, Waite TD, Nystrom M, J. Membr. Sci., 242(1-2), 73 (2004)
  21. Dahmani B, Chabene M, J. Chem. Eng. Process Technol, 2, 103 (2011)
  22. Choo KH, Kwon DJ, Lee KW, Choi SJ, Environ. Sci. Technol., 36, 1330 (2002)
  23. Ji Z, Dong H, Liu M, Hu W, Nano Res., 2, 857 (2009)
  24. Rezek B, Ukraintsev E, Kromka A, Nanoscale Res. Lett., 6, 337 (2011)
  25. Dianoux R, Martin F, Marchi F, Alandi C, Comin F, J. Chevrier, Phys. Rev. B, 68, 454031 (2003)
  26. Boyer L, Houze F, Tonck A, Loubet JL, Georges JM, J. Phys. D-Appl. Phys., 27, 1504 (1994)
  27. Hao HW, Baro AM, Saenz JJ, J. Vac. Sci. Technol. B, 9, 1323 (1991)
  28. Agboola O, Maree J, Mbaya R, Zvinowanda CM, Molelekwa GF, Jullok N, Van der Bruggen B, Volodine A, Haesendonck CV, Korean J. Chem. Eng., 31(8), 1413 (2014)
  29. Kim J, Van der Bruggen B, Environ. Pollut., 158, 2225 (2010)
  30. Pendergast MM, Hoek EMV, Energy Environ. Sci., 4, 1946 (2011)
  31. Crock CA, Rogensues AR, Shan W, Tarabara VV, Water Res., 47, 3984 (2013)
  32. Horcas I, Fernandez R, Rodriguez JMG, Colchero J, Herrero JG, Baro AM, Rev. Sci. Instrum., 78, 013705 (2007)
  33. Cappella B, Dietler G, Surf. Sci. Rep., 34, 1 (1999)
  34. Fontaine P, Guenoun P, Daillant JA, Rev. Sci. Instrum., 68, 4145 (1997)
  35. Frederix PLTM, Bosshart PD, Engel A, Biophys. J., 96, 329 (2009)
  36. Welker J, IIIek E, Giessibi FJ, Beilstein J. Nanotechnol., 3, 238 (2012)
  37. Hoogenboom BW, Hug HJ, Pellmont Y, Martin S, Frederix PLTM, Appl. Phys. Lett., 88, 103109 (2006)
  38. Fukuma T, Kobayashi K, Matsushige K, Yamada H, Appl. Phys. Lett., 88, 193109 (2005)
  39. Bowen WR, Mohammad AW, Chem. Eng. Res. Des., 76(8), 885 (1998)
  40. Elimelech M, Chen WH, Waypa JJ, Desalination, 95, 269 (1994)
  41. Bowen WR, Hilal N, Lovitt RW, Wright CJ, J. Membr. Sci., 139(2), 269 (1998)
  42. Brant JA, Johnson KM, Childress AE, Colloids Surf. A: Physicochem. Eng. Asp., 280, 45 (2006)
  43. Sidek NM, Ali N, Fauzi SAA, The governing factors of nanofiltration membranes separation process performance: A review, Empowering Science, Technology and Innovation Towards Better Tomorrow, EP33, UMTAS (2011). (2011)
  44. Berg P, Hagmeyer G, Gimbel R, Desalination, 113(2-3), 205 (1997)