화학공학소재연구정보센터
Macromolecular Research, Vol.23, No.3, 231-236, March, 2015
Crystallization, rheology and foam morphology of branched PLA prepared by novel type of chain extender
E-mail:
Improving the melt strength of polylactide (PLA) is of continuing strategic research highlight, since this property affects the foaming processability. Using a novel type chain extender, namely polystyrene/poly(glycidyl methacrylate) random copolymer, PLA is branched through melt compounding. Comparing to the neat PLA, the new branched products characterize significantly improved complex viscosity as well as elongational viscosity shown from rheological experiments. Furthermore, differential scanning calorimetry analysis (DSC) indicates the branched structure could also hinder cold crystallization. Owing to the improved viscous and elastic properties, the foams of branched PLA exhibits smaller cell size and higher density, when we use supercritical carbon dioxide (Sc-CO2) as the physical foaming agent.
  1. Drumright RE, Gruber PR, Henton DE, Adv. Mater., 12(23), 1841 (2000)
  2. Park JY, Hwang SY, Yoon WJ, Yoo ES, Im SS, Macromol. Res., 20(12), 1300 (2012)
  3. Lim LT, Auras R, Rubino M, Prog. Polym. Sci., 33, 820 (2008)
  4. Zhai WT, Ko Y, Zhu WL, Wong AS, Park CB, Int. J. Mol. Sci., 10(12), 5381 (2009)
  5. Mathieu LM, Montjovent MO, Bourban PE, Pioletti DP, Manson JAE, J. Biomed. Mater. Res. Part A, 75, 89 (2005)
  6. Lee JH, Park SH, Kim SH, Macromol. Res., 22(4), 424 (2014)
  7. Sauceau M, Fages J, Common A, Nikitine C, Rodier E, Prog. Polym. Sci., 36, 749 (2011)
  8. Mihai M, Huneault MA, Favis BD, Li HB, Macromol. Biosci., 7, 907 (2007)
  9. Lee JH, Park SH, Kim SH, Macromol. Res., 21(11), 1218 (2013)
  10. Dean KM, Petinakis E, Meure S, Yu L, Chryss A, J. Polym. Environ., 20, 741 (2012)
  11. Di YW, Iannace S, Maio E, Nicolais L, Macromol. Mater. Eng., 290, 1083 (2005)
  12. Pilla S, Kim SG, Auer GK, Gong SQ, Park CB, Polym. Eng. Sci., 49(8), 1653 (2009)
  13. Wang LY, Jing XB, Cheng HB, Hu XL, Yang LX, Huang YB, Ind. Eng. Chem. Res., 51(33), 10731 (2012)
  14. Larsen A, Neldin C, Polym. Eng. Sci., 53(5), 941 (2013)
  15. Cho SY, Park HH, Yun YS, Jin HJ, Macromol. Res., 21(5), 529 (2013)
  16. Yu L, Toikka G, Dean K, Bateman S, Yuan Q, Filippou C, Nguyen T, Polym. Int., 62, 759 (2013)
  17. Pilla S, Kramschuster A, Yang LQ, Lee J, Gong SQ, Turng LS, Mater. Sci. Eng. C: Biomimetic Supramol. Syst., 29, 1258 (2009)
  18. Nofar M, Zhu W, Park CB, Polymer, 53(15), 3341 (2012)
  19. Sim KJ, Han SO, Seo YB, Macromol. Res., 18, 189 (2010)
  20. Wang J, Zhu WL, Zhang HT, Park CB, Chem. Eng. Sci., 75, 390 (2012)
  21. Sun SL, Zhang MY, Zhang HX, Zhang XM, J. Appl. Polym. Sci., 122(5), 2992 (2011)
  22. Shen J, Zeng CC, Lee LJ, Polymer, 46(14), 5218 (2005)
  23. Souza DHS, Borges SV, Dias ML, Andrade CT, Polym. Compos., 33, 555 (2012)
  24. Tserki V, Matzinos P, Pavlidou E, Panayiotou C, Polym. Degrad. Stab., 91, 377 (2006)
  25. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C, J. Polym. Sci. B: Polym. Phys., 42(1), 25 (2004)
  26. Shieh YT, Liu GL, J. Polym. Sci. B: Polym. Phys., 45(14), 1870 (2007)
  27. Ling XY, Spruiell JE, J. Polym. Sci. B: Polym. Phys., 44(23), 3378 (2006)
  28. Mendelson RA, Bowles WA, Finger FL, J. Polym. Sci. Part A: Polym. Chem., 8, 105 (1970)
  29. Kim TY, Kim DM, Kim WJ, Lee TH, Suh KS, J. Polym. Sci. B: Polym. Phys., 42(15), 2813 (2004)
  30. Chae HG, Kim BC, Im SS, Han YK, Polym. Eng. Sci., 41(7), 1133 (2001)
  31. Tian JH, Yu W, Zhou CX, Polymer, 47(23), 7962 (2006)
  32. Nam GJ, Yoo JH, Lee JW, J. Appl. Polym. Sci., 96(5), 1793 (2005)
  33. Spitael P, Macosko CW, Polym. Eng. Sci., 44(11), 2090 (2004)
  34. Liu HZ, Zhang JW, J. Polym. Sci. B: Polym. Phys., 49(15), 1051 (2011)