화학공학소재연구정보센터
Macromolecular Research, Vol.23, No.4, 396-401, April, 2015
Preparation and characterization of expanded graphite intercalation compound/UV-crosslinked acrylic resin pressure sensitive adhesives
E-mail:
The expanded graphite intercalated compound (xGIC)/pressure sensitive adhesives (PSAs) were prepared by syrup process and in situ process. The effects of xGIC filler on the morphology and property of acrylic resin based UV-crosslinked PSA were investigated. The xGICs showed more uniform dispersion in acrylic matrix and the degree of filler connection was more prominent in the syrup process than in situ process. The peel strength and tackiness of UV-crosslinked PSAs were strongly dependent on the amount of the filler and the peel strength decreased with increasing xGIC. The thermal conductivity of PSAs was explained in terms of filler dispersion, wetting, and matrix infiltration. The thermal conductivity of PSA was 0.46 W/mK by adding 20 wt% of xGIC, which was 287% improvement compared to the unfilled PSA. It is speculated that 2-dimensional xGIC fillers effectively formed the thermal pathway.
  1. Czech Z, Kowalczyk A, Kabatc J, Shao L, Bai Y, Swiderska J, Polym. Bull., 70(2), 479 (2013)
  2. Czech Z, Butwin A, Kabatc J, Eur. Polym. J., 47, 225 (2011)
  3. Ozturk GI, Pasquale AJ, Long TE, J. Adhes., 86(4), 395 (2010)
  4. Kim YB, Park SC, Kim HK, Hong JW, Macromol. Res., 16(2), 128 (2008)
  5. Kajtna J, Sebenik U, Krajnc M, Int. J. Adhes. Adhes., 49, 18 (2014)
  6. Tobing SD, Klein A, J. Appl. Polym. Sci., 79(12), 2230 (2001)
  7. Tobing SD, Klein A, J. Appl. Polym. Sci., 79(14), 2558 (2001)
  8. Nakayama W, Appl. Mech. Rev., 39, 1847 (1986)
  9. Do HS, Park YJ, Kim HJ, J. Adhes. Sci. Technol., 20(13), 1529 (2006)
  10. Yin HB, Gao XN, Ding J, Zhang ZG, Fang YT, Appl. Energy, 87(12), 3784 (2010)
  11. Biercuk M, Llaguno MC, Radosavljevic M, Hyun J, Johnson AT, Fischer JE, Appl. Phys. Lett., 80, 2767 (2002)
  12. Dresselhaus M, Dresselhaus G, Adv. Phys., 30, 139 (1981)
  13. Park S, Ruoff RS, Nat. Nanotechnol., 4(4), 217 (2009)
  14. Chen G, Wu D, Weng W, He B, Yan W, Polym. Int., 50, 980 (2001)
  15. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN, Nano Lett., 8, 902 (2008)
  16. Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie CA, Polym. Degrad. Stabil., 89, 70 (2005)
  17. Yasmin A, Luo J, Daniel IM, Compos. Sci. Technol., 66, 1182 (2006)
  18. Kim S, Poostforush M, Kim J, Lee S, Express Polym. Lett., 6, 476 (2012)
  19. Mizumachi H, J. Appl. Polym. Sci., 30, 2675 (1985)
  20. Du FM, Guthy C, Kashiwagi T, Fischer JE, Winey KI, J. Polym. Sci. B: Polym. Phys., 44(10), 1513 (2006)
  21. Kenny J, Maffezzoli A, Nicolais L, Compos. Sci. Technol., 38, 339 (1990)
  22. Shinde SL, Goela J, High Thermal Conductivity Materials, Springer, New York, 2006.
  23. Li YC, Chen GH, Polym. Eng. Sci., 47(6), 882 (2007)
  24. Chen G, Weng W, Wu D, Wu C, Eur. Polym. J., 39, 2329 (2003)
  25. Otiaba KC, Ekere NN, Bhatti RS, Mallik S, Alam MO, Amalu EH, Microelectron. Reliab., 51, 2031 (2011)
  26. Lall P, in The CRC Handbook of Thermal Engineering, Kreith F, Ed., CRC Press LLC, Boca Raton, 2000, Vol 4. p 512.
  27. Pang B, Ryu CM, Jin X, Kim HI, Appl. Surf. Sci., 285P, 727 (2013)