화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.27, No.2, 75-94, May, 2015
Effect of confinement on forced convection from a heated sphere in Bingham plastic fluids
E-mail:
In this work, the momentum and heat transfer characteristics of a heated sphere in tubes filled with Bingham plastic fluids have been studied. The governing differential equations (continuity, momentum and thermal energy) have been solved numerically over wide ranges of conditions as: Reynolds number, 1 ≤ Re ≤ 100;Prandtl number, 1 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 100 and blockage ratio,0 ≤ λ ≤ 0.5 where λ is defined as the ratio of the sphere to tube diameter. Over this range of conditions, the flow is expected to be axisymmetric and steady. The detailed flow and temperature fields in the vicinity of the surface of the sphere are examined in terms of the streamline and isotherm contours respectively. Further insights are developed in terms of the distribution of the local Nusselt number along the surface of the sphere together with their average values in terms of mean Nusselt number. Finally, the wall effects on drag are present only when the fluid-like region intersects with the boundary wall. However, heat transfer is always influenced by the wall effects. Also, the flow domain is mapped in terms of the yielded- (fluid-like) and unyielded (solid-like) sub-regions. The fluid inertia tends to promote yielding whereas the yield stress counters it. Furthermore, the introduction of even a small degree of yield stress imparts stability to the flow and therefore, the flow remains attached to the surface of the sphere up to much higher values of the Reynolds number than that in Newtonian fluids. The paper is concluded by developing predictive correlations for drag and Nusselt number.
  1. Ansley RW, Smith TN, AIChE J., 13, 1193 (1967)
  2. Atapattu DD, Chhabra RP, Uhlherr PHT, J. Non-Newton. Fluid Mech., 38, 31 (1990)
  3. ATAPATTU DD, CHHABRA RP, UHLHERR PHT, J. Non-Newton. Fluid Mech., 59(2-3), 245 (1995)
  4. Balmforth NJ, Frigaard IA, Ovarlez G, Ann. Rev. Fluid Mech., 46, 121 (2014)
  5. Beaulne M, Mitsoulis E, J. Non-Newton. Fluid Mech., 72(1), 55 (1997)
  6. Beris AN, Tsamopoulos JA, Armstrong RC, Brown RA, J. Fluid Mech., 158, 219 (1985)
  7. Blackery J, Mitsoulis E, J. Non-Newton. Fluid Mech., 70, 57 (1997)
  8. Chhabra RP, 2006, Bubbles, Drops and Particles in Non-Newtonian Fluids, 2nd ed., CRC Press, Boca Raton. (2006)
  9. Chhabra RP, Richardson JF, 2008, Non-Newtonian Fluid and Applied Rheology: Engineering Applications, 2nd ed., Butterworth-Heinemann, Oxford. (2008)
  10. Clift R, Grace JR, Weber ME, 1978, Bubbles, Drops and Particles, Academic Press, New York. (1978)
  11. de Besses BD, Magnin A, Jay P, AIChE J., 50(10), 2627 (2004)
  12. Dhole SD, Chhabra RP, Eswaran V, AIChE J., 52(11), 3658 (2006)
  13. Feng ZG, Michaelides EE, Int. J. Heat Mass Transf., 43(2), 219 (2000)
  14. Ferroir T, Huynh HT, Chateau X, Coussot P, Phys. Fluids, 16, 594 (2004)
  15. Glowinski R, Wachs A, 2011, On the numerical simulation of viscoplastic fluid flow, In: Glowinski R, Xu J, eds., Handbook of Numerical Analysis, Elsevier, Amsterdam, 483-717. (2011)
  16. Gumulya MM, Horsley RR, Wilson KC, Pareek V, Chem. Eng. Sci., 66(4), 729 (2011)
  17. Gumulya MM, Horsley RR, Pareek V, Phys. Fluids, 26, 023102 (2014)
  18. Gupta AK, Chhabra RP, Ind. Eng. Chem. Res., 53(49), 18943 (2014)
  19. Johnson TA, Patel VC, J. Fluid Mech., 378, 19 (1999)
  20. Macosko CW, 1994, Rheology: Principles, Measurements and Applications, Wiley-VCH, New York. (1994)
  21. McKinley GH, 2002, Steady and transient motion of spherical particles in viscoelastic liquids, In: Chhabra RP, Kee DD, eds., Transport Processes in Bubbles, Drops and Particles, Taylor & Francis, New York, 338-375. (2002)
  22. Missirlis KA, Assimacopoulos D, Mitsoulis E, Chhabra RP, J. Non-Newton. Fluid Mech., 96(3), 459 (2001)
  23. Nirmalkar N, Chhabra RP, Poole RJ, Ind. Eng. Chem. Res., 52(20), 6848 (2013)
  24. Nirmalkar N, Chhabra RP, Poole RJ, Ind. Eng. Chem. Res., 52, 13490 (2013)
  25. Nirmalkar N, Chhabra RP, Poole RJ, Int. J. Heat Mass Transf., 56(1-2), 625 (2013)
  26. Nirmalkar N, Gupta AK, Chhabra RP, Ind. Eng. Chem. Res., 53(45), 17818 (2014)
  27. Nirmalkar N, Bose A, Chhabra RP, Int. J. Therm. Sci., 83, 33 (2014)
  28. Nirmalkar N, Chhabra RP, Int. J. Heat Mass Transf., 70, 564 (2014)
  29. O’Donovan EJ, Tanner RI, J. Non-Newton. Fluid Mech., 15, 75 (1984)
  30. Papanastasiou TC, J. Rheol., 31, 385 (1987)
  31. Patel SA, Chhabra RP, J. Non-Newton. Fluid Mech., 202, 32 (2013)
  32. Patel SA, Chhabra RP, Int. J. Heat Mass Transf., 73, 671 (2014)
  33. Patel SA, Chhabra RP, J. Thermophys. Heat Transf., doi:10.2514/1.T4578 (2015)
  34. Prashant, Derksen JJ, Comput. Chem. Eng., 35(7), 1200 (2011)
  35. Putz A, Frigaard IA, J. Non-Newton. Fluid Mech., 165(5-6), 263 (2010)
  36. Song DY, Gupta RK, Chhabra RP, Ind. Eng. Chem. Res., 48(12), 5845 (2009)
  37. Song DY, Gupta RK, Chhabra RP, Ind. Eng. Chem. Res., 49(8), 3849 (2010)
  38. Song DY, Gupta RK, Chhabra RP, Ind. Eng. Chem. Res., 50(23), 13105 (2011)
  39. Song DY, Gupta RK, Chhabra RP, Int. J. Heat Mass Transf., 55(7-8), 2110 (2012)
  40. Stokes GG, Trans. Cambridge Phil. Soc., 9, 8 (1851)
  41. Krishnan S, Aravamudan K, Ind. Eng. Chem. Res., 50(23), 13137 (2011)
  42. Suresh K, Kannan A, Ind. Eng. Chem. Res., 51, 14867 (2012)
  43. Walters K, Tanner RI, 1992, The motion of a sphere through an elastic fluid, In: Chhabra RP, Kee DD, eds., Transport Processes in Bubbles, Drops, and Particles, Hemisphere, New York, 73-86. (1992)
  44. Wham RM, Basaran OA, Byers CH, Ind. Eng. Chem. Res., 35(3), 864 (1996)
  45. Yu ZS, Wachs A, J. Non-Newton. Fluid Mech., 145(2-3), 78 (2007)