화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.53, No.3, 269-275, June, 2015
축전식 탈염에서 정전압과 정전류 운전에 따른 질산 이온의 선택적 제거율 비교
Comparison of Selective Removal of Nitrate Ion in Constant Voltage and Constant Current Operation in Capacitive Deionization
E-mail:
초록
질산이온 선택성 탄소전극(NSCE, nitrate-selective carbon electrode)에서 전원공급 방식에 따른 이온들의 흡착특성을 분석하였다. 질산이온에 선택성이 높은 음이온수지 분말을 탄소전극에 코팅하여 NSCE를 제조하였다. 질산과 염소이온의 혼합용액에 대해 정전압(CV, constant voltage)과 정전류(CC, constant current) 모드에서 축전식 탈염(CDI, capacitive deionization)을 실시하였다. 이온들의 총 흡착량은 CV 모드로 운전한 경우 CC 모드에 비해 약 15% 증가하였다. 혼합용액에서 질산이온의 비율은 26%로 낮았지만 흡착된 질산이온의 몰비율은 최대 58%로 나타나 NSCE가 질산이온을 선택적으로 제거하는데 효과적임을 확인하였다. CC 모드에서 운전한 경우 흡착된 질산이온의 몰비율은 흡착기간 동안 55~58%로 일정하였다. 반면 CV 모드에서는 30~58%로 큰 차이를 보였다. 이를 통해 셀에 공급되는 전 류가 질산이온의 선택적 제거율을 결정하는데 중요한 인자임을 알 수 있었다.
The adsorption characteristics of ions were evaluated for the nitrate-selective carbon electrode (NSCE) in accordance with power supply methods. The NSCE was fabricated by coating the surface of a carbon electrode with anion-exchange resin powders with high selectivity for the nitrate ion. Capacitive deionization (CDI) experiments were performed on a mixed solution of nitrate and chloride ion in constant voltage (CV) and constant current (CC) modes. The number of total adsorbed ions in CV mode was 15% greater than that in CC mode. The mole fraction of adsorbed nitrate ion showed the maximum 58%, though the mole fraction was 26% in the mixed solution. This indicates that the fabricated NSCE is highly effective for the selective adsorption of nitrate ions. The mole fraction of adsorbed nitrate was nearly constant value of 55-58% during the adsorption period in CC mode. In the case of CV mode, however, the values increased from the initial 30% to 58% at the end of adsorption. We confirmed that the current supplied to cell is important factor to determine the selective removal of nitrate.
  1. Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM, Prog. Mater. Sci., 58(8), 1388 (2013)
  2. Oren Y, Desalination, 228(1-3), 10 (2008)
  3. Son WK, Kim TI, Han HJ, Kang KS, Korean Chem. Eng. Res., 49(6), 697 (2011)
  4. Anderson MA, Cudero AL, Palma J, Electrochim. Acta, 55(12), 3845 (2010)
  5. Zhao R, Biesheuvel PM, Miedema H, Bruning H, van der Wal A, J. Phys. Chem., 1, 205 (2010)
  6. Welgemoed TJ, Schutte CF, Desalination, 183(1-3), 327 (2005)
  7. Park BH, Choi JH, Electrochim. Acta, 55(8), 2888 (2010)
  8. Lee JH, Bae WS, Choi JH, Desalination, 258(1-3), 159 (2010)
  9. Ryoo MW, Seo G, Water Res., 37, 1527 (2003)
  10. Zou L, Morris G, Qi D, Desalination, 225(1-3), 329 (2008)
  11. Xu P, Drewes JE, Hei D, Wang G, Water Res., 42, 2605 (2008)
  12. Pan LK, Wang XZ, Gao Y, Zhang YP, Chen YW, Sun Z, Desalination, 244(1-3), 139 (2009)
  13. Li H, Zou L, Pan L, Sun Z, Environ. Sci. Technol., 44, 8692 (2010)
  14. Li H, Pan L, Lu Y, Zhan Y, Nie C, Sun Z, J. Electroanal. Chem., 653, 40 (2011)
  15. Andelman MD, “Charge Barrier Flow-through Capacitor,” CA Patent NO. 2,444,390(2002). (2002)
  16. Kim YJ, Choi JH, Water Res., 44, 990 (2010)
  17. Kim YJ, Choi JH, Water Res., 46, 6033 (2012)
  18. Yeo JH, Choi JH, Desalination, 320, 10 (2013)
  19. Zhao R, Biesheuvel PM, van der Wal A, Energy Environ. Sci., 5, 9520 (2012)
  20. Jande YAC, Kim WS, Desalination, 329, 29 (2013)
  21. Zhao R, Satpradit O, Rijnaarts HHM, Biesheuvel PM, van der Wal A, Water Res., 47, 1941 (2013)
  22. Helfferrich F, Ion Exchange, Dover Publications, New York, NY(1962). (1962)
  23. Zhao R, Porada S, Biesheuvel PM, Van der Wal A, Desalination, 330, 35 (2013)
  24. Choi JH, Desalination, 347, 224 (2014)
  25. Strathmann H, Ion-Exchange Membrane Separation Processes, Elsevier BV, Amsterdam(2004). (2004)