화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.53, No.3, 391-396, June, 2015
다양한 합성 방법으로 제조된 BiFe0.65MoP0.1 산화물 촉매 상에서 n-부텐의 산화탈수소화 반응
Oxidative Dehydrogenation of n-Butenes over BiFe0.65MoP0.1 Oxide Catalysts Prepared with Various Synthesis Method
E-mail:
초록
n-부텐의 산화탈수소화에서 제조방법이 촉매의 반응활성에 미치는 영향을 조사하기 위하여 BiFe0.65MoP0.1 산화물 촉매를 모델 촉매로 선정하여 공침법, 시트르산법, 수열합성법, 주형법 등의 방법으로 촉매를 제조하였다. 제조한 촉매의 물리·화학적 특성을 알아보고 반응 활성과 연관시키기 위하여 X-선 회절분석(XRD), 질소 흡착·탈착분석(N2 sorption), 암모니아/1-부텐-승온탈착분석(NH3/1-butene-TPD) 등의 특성분석을 수행하였다. 공침법으로 제조한 촉매의 활성이 가장 높게 관찰되었으며, 14시간 동안의 산화탈수소화 반응 기준으로 n-부텐의 전환율은 79.5%, 1,3-부타디엔의 선택도는 85.1%, 1,3-부타디엔 수율은 67.7%의 수치를 보였다. 암모니아 승온탈착 실험으로부터 촉매의 반응 활성은 촉매의 산 특성과 밀접하게 관련이 있으며, 공침법으로 제조한 산화물 촉매가 다른 합성방법으로 제조한 촉매와 비교하여 가장 큰 산량을 갖는 것으로 관찰되었다. 또한, 1-부텐의 승온탈착 분석결과, 촉매의 활성은 흡착된 1-부텐과 촉매의 표면반응에 기인한 중간체의 흡.탈착 특성, 즉 약하게 흡착된 중간체(<200 oC)의 상대적인 양과 강하게 흡착된 중간체의 탈착 온도(>200 oC)와 밀접하게 관련이 있었다.
To investigate the effect of the catalyst synthesis method on the oxidative dehydrogenation (ODH) of nbutenes, BiFe0.65MoP0.1 oxide catalysts were prepared with various synthesis methods such as co-precipitation, citric acid method, hydrothermal method, and surfactant templated method. The catalysts were characterized by X-ray Diffraction (XRD), N2 sorption, and NH3/1-butene-temperature programmed desorption (NH3/1-butene-TPD) to correlate with catalytic activity in ODH reaction. Among the catalysts studied here, BiFe0.65MoP0.1 oxide catalyst prepared with co-precipitation method marked the highest activity showing 1-butene conversion, 79.5%, butadiene selectivity, 85.1% and yield, 67.7% after reaction for 14 h. From the result of NH3-TPD, the catalytic activity is closely related to the acidity of the BiFe0.65MoP0.1-x oxide catalyst and acidity of the BiFe0.65MoP0.1 oxde catalyst prepared with co-precipitation method was higher than that of other catalysts. In addition, combined with the 1-butene TPD, the higher catalytic activity is closely related to the amount of weakly adsorbed intermediate (<200 oC) and the desorbing temperature of strongly adsorbed intermediates (>200 oC).
  1. White WC, Chem. Biol. Interact., 166, 10 (2007)
  2. Bhasin MM, McCain JH, Vora BV, Imai T, Pujado PR, Appl. Catal. A: Gen., 221(1-2), 397 (2001)
  3. Lee H, Jung JC, Kim H, Chung YM, Kim TJ, Lee SJ, Oh SH, Kim YS, Song IK, Korean J. Chem. Eng., 26(4), 994 (2009)
  4. Soares APV, Dimitrov LD, de Oliveira MCRA, Hilaire L, Portela MF, Grasselli RK, Appl. Catal. A: Gen., 253(1), 191 (2003)
  5. Park JH, Noh H, Park JW, Row K, Jung KD, Shin CH, Appl. Catal. A: Gen., 431, 137 (2012)
  6. Jung J, Lee H, Song I, Catal. Lett., 128(1-2), 243 (2009)
  7. Park TJ, “Oxidative Dehydrogenation of Butenes over Zinc Ferrite Catalysts,” Ph.D. Thesis, Rice University, Texas(1987). (1987)
  8. Weng LT, Delmon B, Appl. Catal. A: Gen., 81, 141 (1992)
  9. Lee HW, Jung JC, Kim HS, Chung YM, Kim TJ, Lee SJ, Oh SH, Kim YS, Song IK, Catal. Commun., 9, 1137 (2008)
  10. Marcu IC, Sandulescu I, Millet JMM, J. Mol. Catal. A-Chem., 203(1-2), 241 (2003)
  11. Jung JC, Kim HS, Choi AS, Chung YM, Kim TJ, Lee SJ, Oh SH, Song IK, Catal. Commun., 8, 625 (2007)
  12. Park JH, Noh HR, Park JW, Row KH, Jung KD, Shin CH, Res. Chem. Intermed., 37, 1125 (2011)
  13. Moro-Oka Y, Ueda W, Adv. Catal., 40, 233 (1994)
  14. He DH, Ueda W, Moro-Oka Y, Catal. Lett., 12, 35 (1992)
  15. Jung JC, Lee HW, Kim HS, Chung YM, Kim TJ, Lee SJ, Oh SH, Song IK, Catal. Commun., 9, 943 (2008)
  16. Ai M, J. Catal., 60, 305 (1979)
  17. Kung HH, Kung MC, Adv. Catal., 33, 159 (1985)
  18. Park JH, Shin CH, J. Ind. Eng. Chem., DOI No.: http://dx.doi.org/10.1016/j/jiec/2014.03.037 (2014)
  19. Veniaminov SA, Barannik GB, React. Kinet. Catal. Lett., 13, 413 (1980)
  20. Golunski SE, Walker AP, J. Catal., 204(1), 209 (2001)