Applied Chemistry for Engineering, Vol.26, No.3, 311-318, June, 2015
비스페놀 A 수용액의 대기압 플라즈마 처리
Atmospheric Pressure Plasma Treatment of Aqueous Bisphenol A Solution
E-mail:
초록
내분비계교란물질로 알려진 비스페놀 A (bisphenol A, BPA) 수용액의 플라즈마 처리 및 분해 경로에 대해 조사하였다. 플라즈마화된 기체와 BPA 수용액을 효과적으로 접촉시키기 위하여 다공성 세라믹 관내에서 플라즈마를 생성시켜 세라믹 관의 세공을 통해 수중으로 고르게 분산시켰다. 기체의 유량, 인가 전압, 처리시간이 BPA 분해에 미치는 영향을 조사하였으며, 자외선 분광광도계, 이온 크로마토그래피, 기체크로마토그래피-질량분석기를 활용한 분석을 통해 반응경로를 제시하였다. 기체의 유량이 너무 크거나 작으면 동일한 전력이 공급되더라도 처리효과가 떨어지며 적정한 기체 유량은 1.0 L min-1인 것으로 나타났다. 전압이 높을수록 많은 전력이 공급되므로 BPA를 제거하는 시간이 단축되나, 소모되는 에너지는 전압에 관계없이 유사하였다. 유량 1.0 L min-1과 전압 20 kV 조건에서 초기농도 10 mg L-1 (부피 : 1 L)인 BPA가 30 min 이내에 모두 제거되었다. 오존이나 하이드록실 라디칼과 같은 활성성분들에 의해 BPA 구조가 파괴되어 생성되는 중간생성물들은 후속 산화반응을 통해 아세테이트, 포메이트, 옥살레이트와 같은 안정한 물질로 전환됨을 확인하였다.
This work investigated the plasma treatment of aqueous bisphenol A (BPA) solution and mineralization pathways. For the effective contact between plasmatic gas and aqueous BPA solution, the plasma was created inside a porous ceramic tube, which was uniformly dispersed into the aqueous solution through micro-pores of the ceramic tube. Effects of the gas flow rate, applied voltage and treatment time on the decomposition of BPA were examined, and analyses using ultraviolet (UV) spectroscopy, ion chromatography and gas chromatography-mass spectrometry were also performed to elucidate mineralization mechanisms. The appropriate gas flow rate was around 1.0 L min-1; when the gas flow rate was too high or too low, the BPA decomposition performance at a given electric power decreased. The increase in the voltage improves the BPA decomposition due to the increased electric power, but the energy required to remove BPA was similar, regardless of the voltage. Under the condition of 1.0 L min-1 and 20.8 kV, BPA at an initial concentration of 10 mg L-1 (volume : 1 L) was successfully treated within 30 min. The intermediates produced by the attack of ozone and hydroxyl radicals on BPA were further oxidized to stable compounds such as acetate, formate and oxalate.
- Lee JW, Kwon TO, Thiruvenkatachari R, Moon IS, J. Environ. Sci., 18, 193 (2006)
- Esplugas S, Bila DM, Krause LGT, Dezotti M, J. Hazard. Mater., 149(3), 631 (2007)
- Jiang J, Pang SY, Ma J, Liu H, Environ. Sci. Technol., 46, 1774 (2012)
- Jin X, Peldszus S, Huck PM, Water Res., 46, 6519 (2012)
- Patisaul HB, Adewale HB, Front. Behav. Neurosci., 3, 1 (2009)
- Flint S, Markle T, Thompson S, Wallace E, J. Environ. Manage., 104, 19 (2012)
- Baronti C, Curini R, D’Ascenzo G, Di Corcia A, Gentili A, Samperi R, Environ. Sci. Technol., 34, 5059 (2000)
- Manning T, Aust. J. Ecotoxicol., 11, 1 (2005)
- Ifelebuegu AO, Ezenwa CP, Water Air Soil Pollut., 217, 213 (2011)
- Rogers JA, Metz L, Yong VW, Mol. Immunol., 53, 421 (2013)
- Mezohegyi G, Erjavec B, Kaplan R, Pintar A, Ind. Eng. Chem. Res., 52(26), 9301 (2013)
- Chan YY, Yue YN, Li YX, Webster RD, Electrochim. Acta, 112, 287 (2013)
- Wang JL, Xu LJ, Crit. Rev. Environ. Sci. Technol., 42, 251 (2012)
- Homem V, Santos L, J. Environ. Manage., 92, 2304 (2011)
- Magureanu M, Piroi D, Mandache NB, David V, Medvedovici A, Parvulescu VI, Water Res., 44, 3445 (2010)
- Tang SF, Lu N, Li J, Wu Y, Thin Solid Films, 521, 257 (2012)
- Kim KS, Yang CS, Mok YS, Chem. Eng. J., 219, 19 (2013)
- Jo JO, Kim SD, Lee HJ, Mok YS, Chem. Eng. J., 247, 291 (2014)
- Kim KS, Kam SK, Mok YS, Chem. Eng. J., 271, 31 (2015)
- Kogelschatz U, Eliasson B, Egli W, Dielectric-barrier discharges, principle and applications, J. Phys. IV France, 7, C4-47-C4-66 (1997).
- Mok YS, Nam IS, Chem. Eng. Technol., 22(6), 527 (1999)
- Zhang H, Huang Q, Ke Z, Yang L, Wang X, Yu Z, Water Res., 46, 6554 (2012)
- Malik MA, Water purification by plasmas: which reactors are most energy efficient?, Plasma Chem Plasma Proc., 30, 21-31 (2010).
- Reddy PMK, Ramaraju B, Subrahmanyam C, Water Sci. Technol., 67, 1097 (2013)
- Jo JO, Lee SB, Mok YS, Appl. Chem. Eng., 24(5), 544 (2013)
- Standard Test Method for Determination of Bisphenol A in Environmental Waters by Liquid Chromatography/Tandem Mass Spectrometry, American Society for Testing and Materials (ASTM) D7574-09.
- Hagelaar GJM, Pitchford LC, Plasma Sources Sci. Technol., 14, 722 (2005)
- Bonazzi D, Andrisano V, Di Pietra AM, Cavrini V, Farmaco, 49, 381 (1994)
- Panorel I, Preis S, Kornev I, Hatakka H, Louhi-Kultanen M, Ozone-Sci. Eng., 35, 116 (2013)
- Panorel I, Preis S, Kornev I, Hatakka V, Louhi-Kultanen M, Environ. Technol., 34, 923 (2013)
- Magureanu M, Piroi D, Gherendi F, Mandache NB, Parvulescu V, Plasma Chem. Plasma Process., 28(6), 677 (2008)
- Kim SE, Yamada H, Hiroshi T, Ozone Sci. Eng., 26, 563 (2004)
- Gao LH, Sun L, Wan SG, Yu ZB, Li MJ, Chem. Eng. J., 228, 790 (2013)
- Mayani SV, Mayani VJ, Kim SW, Bull. Korean Chem. Soc., 35, 3535 (2014)
- Molkenthin M, Olmez-Hanci T, Jekel MR, Arslan-Alaton I, Water Res., 47, 5052 (2013)
- Peller JR, Mezyk SP, Cooper WJ, Res. Chem. Intermed., 35, 21 (2009)
- Tay KS, Rahman NA, Abas MRB, Maejo Int. J. Sci. Technol., 6, 77 (2012)
- Deborde M, Rabouan S, Mazellier P, Duguet JP, Legube B, Water Res., 42, 4299 (2008)
- Sin JC, Lam SM, Mohamed AR, Lee KT, Int. J. Photoenergy, 2012, 1 (2012)
- Torres RA, Petrier C, Combet E, Carrier M, Pulgarin C, Ultrason. Sonochem., 15, 605 (2008)
- Staehelin J, Buehler RE, Hoigne J, J. Phys. Chem., 88, 5999 (1984)
- Khraisheh MAM, Col. Technol., 119, 24 (2002)