화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.11, 599-603, November, 2014
Microwave Sol-Gel Preparation of NaLa(MoO4)2:Eu3+/Yb3+ Particles and Their Upconversion Photoluminescence Properties
E-mail:
NaLa1-x(MoO4)2:Eu3+/Yb3 phosphors with doping concentrations of Eu3+ and Yb3+ (x = Eu3++Yb3+, Eu3+ = 0.05, 0.1, 0.2 and Yb3+= 0.2, 0.45) were successfully synthesized by the microwave-modified sol-gel method, and the upconversion and spectroscopic properties were investigated. Well-crystallized particles showed a fine and homogeneous morphology with particle sizes of 2-5 μm. Under excitation at 980 nm, NaLa0.5(MoO4)2:Eu0.05Yb0.45 particles exhibited a strong 525-nm emission band and a weak 550-nm emission band in the green region, and a very weak 665-nm emission band in the red region. The strong 525-nm emission in the green region corresponds to the 7F1→5D1 transition and the weak 550-nm emission in the green region corresponds to the 7F0→5D2 transition, while the very weak emission 665-nm band in the red region corresponds to the 5D0→7F3 transition. The Raman spectra of the doped particles indicated the domination of strong peaks at higher frequencies of 762, 890, 1358 and 1430 cm.1 and weak peaks at lower frequencies of 323, 388 and 450 cm.1 induced by the disorder of the [MoO4]2. groups with the incorporation of the Eu3+ and Yb3+ elements into the crystal lattice or by a new phase formation.
  1. Lin M, Zho Y, Wang S, Liu M, Duan Z, Chen Y, Li F, Xu F, Lu T, Biol. Adv., 30, 1551 (2012)
  2. Wang M, Abbineni G, Clevenger A, Mao C, Xu X, Nanomedicine, Nanotech. Biology, and Medicine, 7, 710 (2011).
  3. Shalav A, Richards BS, Green MA, Sol. Energy Mater. Sol. Cells, 91(9), 829 (2007)
  4. Guo C, Yang HK, Jeong JH, J. Lumin., 130, 1390 (2010)
  5. Liao J, Zhou D, Yang B, liu R, Zhang Q, Zhou Q, J. Lumin., 134, 533 (2013)
  6. Sun J, Xian J, Du H, J. Phys. Chem. Solids, 72, 207 (2011)
  7. Li T, Guo C, Wu Y, Li L, Jeong JH, J. Alloy. Compd., 540, 107 (2012)
  8. Nazarov M, Noh DY, J. Rare Earths, 28, 1 (2010)
  9. Sun JY, Zhang W, Zhang WH, Du HY, Mater. Res. Bull., 47(3), 786 (2012)
  10. Du HY, Lan YJ, Xia ZG, Sun JY, Mater. Res. Bull., 44(8), 1660 (2009)
  11. Wang Z, Liang H, Gong M, Su Q, J. Alloy. Compd., 432, 308 (2007)
  12. Haque M, Kim DK, Mater. Lett., 63, 793 (2009)
  13. Zhao C, Yin X, Huang F, Hang Y, J. Sol. State. Chem., 184, 3190 (2011)
  14. Qin L, Huang YL, Tsuboi T, Seo HJ, Mater. Res. Bull., 47(12), 4498 (2012)
  15. Yang YL, Li XM, Feng WL, Li WL, Tao CY, J. Alloy. Compd., 505, 239 (2010)
  16. Lim CS, Mater. Chem. Phys., 140(1), 154 (2013)
  17. Lim CS, Mater. Res. Bull., 47, 4220 (2013)
  18. Zhang J, Wang X, Zhang X, Zhao X, Liu X, Peng L, Inog. Chem. Commun., 14, 1723 (2011)
  19. Sun J, Xian J, Zhang X, Du H, J. Rare Earths, 29, 32 (2011)
  20. Sun Q, Chen X, Liu Z, Wang F, Jiang Z, Wang C, J. Alloy. Compd., 509, 5336 (2012)
  21. Lim CS, Mater. Res. Bull., 48, 3805 (2001)