Korean Journal of Materials Research, Vol.25, No.5, 247-252, May, 2015
Effect of Precursor Concentration on the Structural, Morphological, and Optical Properties of TiO2 Nano-Flowers
E-mail:
The effect of precursor concentration on the structural, morphological, and optical properties of TiO2nano-flowers was investigated in this study. An increase in crystallite size was observed with an increase in the concentration of the precursor (titanium butoxide). The FE-SEM micrographs of the as-prepared samples show a three-dimensional flower-like morphology. The flowers consist of several nanorods coming out of a single core and have very sharp edges. Also, the variation in the aspect ratio of the nanostructure was observed with the concentration of the precursor. The photocatalytic properties of the samples show that the sample that has a high aspect ratio (AR~9) has a much better photocatalytic activity compared to the nano-crystal with a low aspect ratio (AR~6.1). It is believed that the excellent photocatalytic performance and short time synthesis of TiO2nano-flowers using the microwave hydrothermal method can have potential applications in the field of photocatalysis.
- Liang DY, Cui C, Hu HH, Wang YP, Xu S, Ying B, Li PG, Lu BQ, Shen HL, J. Alloy. Compd., 582, 236 (2014)
- Li YC, Ma Q, Han J, Ji LL, Wang JX, Chen JY, Wang YQ, Appl. Surf. Sci., 297, 103 (2014)
- Gao Q, Wu XM, Fan YM, Zhou XY, J. Alloy. Compd., 579, 322 (2013)
- Soundarrajan P, Sankarasubramanian K, Logu T, Sethuraman K, Ramamurthi K, Mater. Lett., 116, 191 (2014)
- Selman AM, Hassan Z, Opt. Mater., 44, 37 (2015)
- Tachikawa T, Takai Y, Tojo S, Fujitsuka M, Irie H, Hashimoto K, Majima T, J. Phys. Chem. B, 110(26), 13158 (2006)
- Kormann C, Bahnemann D, Hoffmann M, J. Phys. Chem., 92(18), 5196 (1988)
- Piera E, Tejedor-Tejedor MI, Zorn ME, Anderson MA, Appl. Catal. B: Environ., 46(4), 671 (2003)
- Anpo M, Stud. Surf. Sci. Catal., 130, 157 (2000)
- Liu DN, He GH, Zhu L, Zhou WY, Xu YH, Appl. Surf. Sci., 258(20), 8055 (2012)
- Song HJ, Chen T, Sun YL, Zhang XQ, Jia XH, Ceram. Int., 40, 11015 (2014)
- Xu HP, Liao JH, Yuan S, Zhao Y, Zhang MH, Wang ZY, Shi LY, Mater. Res. Bull., 51, 326 (2014)
- Aphairaj D, Wirunmongkol T, Niyomwas S, Pavasupree S, Limsuwan P, Ceram. Int., 40, 9241 (2014)
- Chen JY, Zhang HM, Liu PR, Wang Y, Liu XL, Li GY, An TC, Zhao HJ, J. Colloid Interface Sci., 429, 53 (2014)
- Jing Y, Li LS, Zhang QY, Lu P, Liu PH, Lu XH, J. Hazard. Mater., 189(1-2), 40 (2011)
- Colombo M, Carregal-Romero S, Casula MF, Gutieiyrrez L, Morales MP, Bohm IB, Heverhagen JT, Prosperi D, Parak WJ, Chem. Soc. Rev., 41, 4306 (2012)
- Ou SF, Chou HH, Lin CS, Shih CJ, Wang KK, Pan YN, Appl. Surf. Sci., 258(17), 6190 (2012)
- Grover IS, Singh S, Pal B, Appl. Surf. Sci., 280, 366 (2013)
- Guo WL, Liu XL, Huo PW, Gao X, Wu D, Lu ZY, Yan YS, Appl. Surf. Sci., 258(18), 6891 (2012)
- Jun YW, Casula MF, Sim JH, Kim SY, Cheon J, Alivisatos AP, J. Am. Chem. Soc., 125(51), 15981 (2003)
- Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Adv. Mater., 11(15), 1307 (1999)
- Tian ZRR, Voigt JA, Liu J, McKenzie B, Xu HF, J. Am. Chem. Soc., 125(41), 12384 (2003)
- Beranek R, Tsuchiya H, Sugishima T, Macak JM, Taveira L, Fujimoto S, Kisch H, Schmuki P, Appl. Phys. Lett., 87, 243114 (2005)
- Zhang ZB, Wang CC, Zakaria R, Ying JY, J. Phys. Chem. B, 102(52), 10871 (1998)
- Park JH, Kim S, Bard AJ, Nano Lett., 6, 24 (2006)
- Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 6(2), 215 (2006)
- Sun B, Zhou GW, Zhang Y, Liu RR, Li TD, Chem. Eng. J., 264, 125 (2015)
- Gu YJ, Xing MY, Zhang JL, Appl. Surf. Sci., 319, 8 (2014)
- Macak JM, Tsuchiya H, Schmuki P, Angew. Chem.-Int. Edit., 44, 2100 (2005)
- Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N, Appl. Phys. Lett., 82, 281 (2003)