화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.3, 239-246, June, 2015
전기방사를 이용한 슈퍼캐퍼시터용 금속산화물/탄소나노섬유 복합체
Electrospun Metal Oxide/Carbon Nanofiber Composite Electrode for Supercapacitor Application
E-mail:
초록
나노 탄소재료를 복합화하면 기존 재료의 특성을 유지하면서 그 효율을 극대화할 수 있다. 여기에 이종원소를 부가하면 전기화학적인 특성이 디자인되므로, 나노 탄소재료의 복합화를 통해 한 종류의 나노 재료로부터 여러 강점을 얻을 수 있다. 특히 탄소나노섬유와 금속산화물을 복합화하면 탄소나노섬유의 전기이중층 뿐만 아니라 금속산화물의 산화환원 반응을 이용하여 비축전 용량, 고율 특성, 수명 특성이 향상되고 높은 수준의 출력밀도가 유지되는 고용량 슈퍼 캐퍼시터용 전극 소재를 개발할 수 있다. 본 총설에서는 탄소의 고출력특성과 금속산화물의 고에너지 특성이 동시에 발현되는 금속산화물계 탄소나노섬유복합체의 제법과 응용에 대한 최신연구를 다루도록 하겠다.
The hybridization of carbon nano-materials enhances the efficiency of each function of the resulting structure or composites. Also, the addition of non-carbon elements to nanomaterials modifies the electrochemical properties. Electrodes combining porous carbon nanofibers (CNFs) and metal oxides benefit from the combination of the double-layer capacitance of the CNFs and the pseudocapacitive character associated with the surface redox-type reactions. Consequently, they demonstrate superior supercapacitor performance in terms of high capacitance, high energy/power efficiency and high rate capability. This paper presents a comprehensive review of the latest advances made in the development and application of various metal oxide/CNF composites (CNFCs) to supercapacitor electrodes.
  1. Winter M, Brodd RJ, Chem. Rev., 104(10), 4245 (2004)
  2. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
  3. Guo YG, Hu JS, Wan LJ, Adv. Mater., 20(15), 2878 (2008)
  4. Wang HL, Casalongue HS, Liang YY, Dai HJ, J. Am. Chem. Soc., 132(21), 7472 (2010)
  5. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y, Science, 328(5977), 480 (2010)
  6. Miller JR, Outlaw RA, Holloway BC, Science, 329(5999), 1637 (2010)
  7. Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS, Science, 332(6037), 1537 (2011)
  8. Izadi-Najafabadi A, Yamada T, Futaba DN, Yudasaka M, Takagi H, Hatori H, Iijima S, Hata K, ACS Nano, 5, 811 (2011)
  9. El-Kady MF, Strong V, Dubin S, Kaner RB, Science, 335(6074), 1326 (2012)
  10. Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
  11. Nishino A, J. Power Sources, 60, 137 (1990)
  12. Lei CH, Wilson P, Lekakou C, J. Power Sources, 196(18), 7823 (2011)
  13. Zheng JP, Electrochem. Solid State Lett., 2, 359 (1999)
  14. Frackowiak E, Beguin F, Carbon, 39, 937 (2001)
  15. Endo M, Maeda T, Takeda T, Kim YJ, Koshiba K, Hara H, Dresselhaus MS, J. Electrochem. Soc., 148(8), A910 (2001)
  16. Teng H, Chang Y, Hsieh CT, Carbon, 39, 1981 (2001)
  17. Hsieh CT, Teng H, Carbon, 40, 667 (2002)
  18. Ye JS, Cui HF, Liu X, Lim TM, Zhang WD, Sheu FS, Small, 1, 560 (2005)
  19. Wang YG, Li HQ, Xia YY, Adv. Mater., 18(19), 2619 (2006)
  20. Zheng C, Qi L, Yoshio M, Wang HY, J. Power Sources, 195(13), 4406 (2010)
  21. Jiang J, Gao Q, Xia K, Hu J, Microporous Mesoporous Mater., 118, 28 (2009)
  22. Fuertes AB, Lota G, Centeno TA, Frackowiak E, Electrochim. Acta, 50(14), 2799 (2005)
  23. Wang KP, Teng H, Carbon, 44, 3218 (2006)
  24. Li W, Zhang F, Dou Y, Wu Z, Liu H, Qian X, Gu D, Xia Y, Tu B, Zhao D, Adv. Eng. Mater., 1, 382 (2011)
  25. Ryu Z, Zheng J, Wang M, Carbon, 36, 427 (1998)
  26. Marcinauskas L, Kavaliauskas Z, Valincius V, J. Mater. Technol., 28, 931 (2012)
  27. Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
  28. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS, Int. J. Hydrog. Energy, 34(11), 4889 (2009)
  29. Kwon T, Nishihara H, Itoi H, Yang QH, Kyotani T, Langmuir, 25(19), 11961 (2009)
  30. Rakhi RB, Alshareef HN, J. Power Sources, 196(20), 8858 (2011)
  31. Shakir I, Nadeem M, Shahid M, Kang DJ, Electrochim. Acta, 118, 138 (2014)
  32. Battumur T, Ambade SB, Ambade RB, Pokharel P, Lee DS, Han SH, Lee W, Lee SH, Curr. Appl. Phys., 13(1), 196 (2013)
  33. Morton WJ, Method of dispersing fluids, UNITED STATES PATENT, N0. 705,691 (1902).
  34. Kim C, An KH, Lee WH, Yang KS, Nanocomposite fiber, its preparation and use, Korean Patent 10-2004-0088578 (in Korean) (2004).
  35. Fennessey SF, Farris RJ, Polymer, 45(12), 4217 (2004)
  36. Shao C, Kim HY, Gong J, Ding B, Lee DR, Park SJ, Mater. Lett., 57, 1579 (2003)
  37. Holzmeister A, Rudisile M, Greiner A, Wendorff JH, Eur. Polym. J., 43, 4859 (2007)
  38. He Y, Zhang T, Zheng W, Wang R, Liu X, Xia Y, Zhao J, Sens. Actuators B-Chem., 146, 98 (2010)
  39. McCann JT, Marquez M, Xia YN, J. Am. Chem. Soc., 128(5), 1436 (2006)
  40. Ra EJ, Kim TH, Yu WJ, An KH, Lee YH, Chem. Commun., 46, 1320 (2010)
  41. Kim C, Yang KS, Appl. Phys. Lett., 83, 1216 (2003)
  42. Xia K, Gao Q, Jiang J, Hu J, Carbon, 46, 1718 (2008)
  43. Hu JL, Huang JH, Chih YK, Chuang CC, Chen JP, Cheng SH, Horng JL, Diam. Relat. Mat., 18, 511 (2009)
  44. Ju YW, Choi GR, Jung HR, Lee WJ, Electrochim. Acta, 53(19), 5796 (2008)
  45. Wang H, Gao Q, Hu J, Microporous Mesoporous Mater., 131, 89 (2010)
  46. Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P, J. Am. Chem. Soc., 130(9), 2730 (2008)
  47. Wang KP, Teng H, Carbon, 44, 3218 (2006)
  48. Fan J, Wang T, Yu CZ, Tu B, Jiang ZY, Zhao DY, Adv. Mater., 16(16), 1432 (2004)
  49. Shi L, He H, Fang Y, Jia Y, Luo B, Zhi L, Chin. Sci. Bull., 59, 1832 (2014)
  50. Rarnani M, Haran BS, White RE, Popov BN, J. Electrochem. Soc., 148(4), A374 (2001)
  51. Chuang CM, Huang CW, Teng H, Ting JM, Compos. Sci. Technol., 72, 1524 (2012)
  52. Lee BJ, Sivakkumar SR, Ko JM, Kim JH, Jo SM, Kim DY, J. Power Sources, 168(2), 546 (2007)
  53. Ju YW, Choi GR, Jung HR, Kim C, Yang KS, Lee WJ, J. Electrochem. Soc., 154(3), A192 (2007)
  54. Dong XP, Shen WH, Gu JL, Xiong LM, Zhu YF, Li Z, Shi JL, J. Phys. Chem. B, 110(12), 6015 (2006)
  55. Liu M, Gan L, Xiong W, Xu Z, Zhu D, Chen L, J. Mater. Chem. A, 2, 2555 (2014)
  56. Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H, Kajita K, Solid State Ion., 152, 833 (2002)
  57. Wang GX, Zhang BL, Yu ZL, Qu MZ, Solid State Ion., 176, 1169 (2005)
  58. Suzuki S, Hibino M, Miyayama M, J. Power Sources, 124(2), 513 (2003)
  59. Dobley A, Ngala K, Yang S, Zavalij PY, Whittingham MS, Chem. Mater., 13, 4382 (2001)
  60. Sakamoto JS, Dunn B, J. Electrochem. Soc., 149(1), A26 (2002)
  61. Nam KW, Lee ES, Kim JH, Lee YH, Kim KB, J. Electrochem. Soc., 152(11), A2123 (2005)
  62. Kim IH, Kim JH, Kim KB, Electrochem. Solid State Lett., 8(7), A369 (2005)
  63. Kim BH, Kim CH, Yang KS, Rahy A, Yang DJ, Electrochim. Acta, 83, 335 (2012)
  64. Kim BH, Yang KS, Yang DJ, Electrochim. Acta, 109, 859 (2013)
  65. Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukla AK, J. Am. Chem. Soc., 133(40), 16291 (2011)
  66. Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T, J. Phys. Chem. C, 111, 227 (2007)
  67. Woo SW, Dokko K, Nakano H, Kanamura K, J. Mater. Chem., 18, 1674 (2008)
  68. Wang DW, Li F, Liu M, Lu GQ, Cheng HM, Angew. Chem.-Int. Edit., 47, 373 (2008)
  69. Selvakumar M, Bhat DK, Aggarwal AM, Iyer SP, Sravani G, Phys. B, 405, 2286 (2010)
  70. Aravinda LS, Nagaraja KK, Nagaraja HS, Bhat KU, Bhat BR, Electrochim. Acta, 95, 119 (2013)
  71. Zhang YP, Sun XW, Pan LK, Li HB, Sun Z, Sun CP, Tay BK, Solid State Ion., 180(32-35), 1525 (2009)
  72. Kalpana D, Omkumar KS, Kumar SS, Renganathan NG, Electrochim. Acta, 52(3), 1309 (2006)
  73. Kim CH, Kim BH, J. Power Sources, 274, 512 (2015)
  74. Kim CH, Kim BH, J. Electroanal. Chem., 730, 1 (2014)
  75. Mu J, Shao C, Guo Z, Zhang Z, Zhang M, Zhang P, Chen B, Liu Y, ACS Appl. Mater. Interfaces, 3, 590 (2011)
  76. Chen S, Zhu JW, Wu XD, Han QF, Wang X, ACS Nano, 4, 2822 (2010)