- Previous Article
- Next Article
- Table of Contents
Applied Chemistry for Engineering, Vol.26, No.3, 239-246, June, 2015
전기방사를 이용한 슈퍼캐퍼시터용 금속산화물/탄소나노섬유 복합체
Electrospun Metal Oxide/Carbon Nanofiber Composite Electrode for Supercapacitor Application
E-mail:
초록
나노 탄소재료를 복합화하면 기존 재료의 특성을 유지하면서 그 효율을 극대화할 수 있다. 여기에 이종원소를 부가하면 전기화학적인 특성이 디자인되므로, 나노 탄소재료의 복합화를 통해 한 종류의 나노 재료로부터 여러 강점을 얻을 수 있다. 특히 탄소나노섬유와 금속산화물을 복합화하면 탄소나노섬유의 전기이중층 뿐만 아니라 금속산화물의 산화환원 반응을 이용하여 비축전 용량, 고율 특성, 수명 특성이 향상되고 높은 수준의 출력밀도가 유지되는 고용량 슈퍼 캐퍼시터용 전극 소재를 개발할 수 있다. 본 총설에서는 탄소의 고출력특성과 금속산화물의 고에너지 특성이 동시에 발현되는 금속산화물계 탄소나노섬유복합체의 제법과 응용에 대한 최신연구를 다루도록 하겠다.
The hybridization of carbon nano-materials enhances the efficiency of each function of the resulting structure or composites. Also, the addition of non-carbon elements to nanomaterials modifies the electrochemical properties. Electrodes combining porous carbon nanofibers (CNFs) and metal oxides benefit from the combination of the double-layer capacitance of the CNFs and the pseudocapacitive character associated with the surface redox-type reactions. Consequently, they demonstrate superior supercapacitor performance in terms of high capacitance, high energy/power efficiency and high rate capability. This paper presents a comprehensive review of the latest advances made in the development and application of various metal oxide/CNF composites (CNFCs) to supercapacitor electrodes.
- Winter M, Brodd RJ, Chem. Rev., 104(10), 4245 (2004)
- Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
- Guo YG, Hu JS, Wan LJ, Adv. Mater., 20(15), 2878 (2008)
- Wang HL, Casalongue HS, Liang YY, Dai HJ, J. Am. Chem. Soc., 132(21), 7472 (2010)
- Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y, Science, 328(5977), 480 (2010)
- Miller JR, Outlaw RA, Holloway BC, Science, 329(5999), 1637 (2010)
- Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS, Science, 332(6037), 1537 (2011)
- Izadi-Najafabadi A, Yamada T, Futaba DN, Yudasaka M, Takagi H, Hatori H, Iijima S, Hata K, ACS Nano, 5, 811 (2011)
- El-Kady MF, Strong V, Dubin S, Kaner RB, Science, 335(6074), 1326 (2012)
- Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
- Nishino A, J. Power Sources, 60, 137 (1990)
- Lei CH, Wilson P, Lekakou C, J. Power Sources, 196(18), 7823 (2011)
- Zheng JP, Electrochem. Solid State Lett., 2, 359 (1999)
- Frackowiak E, Beguin F, Carbon, 39, 937 (2001)
- Endo M, Maeda T, Takeda T, Kim YJ, Koshiba K, Hara H, Dresselhaus MS, J. Electrochem. Soc., 148(8), A910 (2001)
- Teng H, Chang Y, Hsieh CT, Carbon, 39, 1981 (2001)
- Hsieh CT, Teng H, Carbon, 40, 667 (2002)
- Ye JS, Cui HF, Liu X, Lim TM, Zhang WD, Sheu FS, Small, 1, 560 (2005)
- Wang YG, Li HQ, Xia YY, Adv. Mater., 18(19), 2619 (2006)
- Zheng C, Qi L, Yoshio M, Wang HY, J. Power Sources, 195(13), 4406 (2010)
- Jiang J, Gao Q, Xia K, Hu J, Microporous Mesoporous Mater., 118, 28 (2009)
- Fuertes AB, Lota G, Centeno TA, Frackowiak E, Electrochim. Acta, 50(14), 2799 (2005)
- Wang KP, Teng H, Carbon, 44, 3218 (2006)
- Li W, Zhang F, Dou Y, Wu Z, Liu H, Qian X, Gu D, Xia Y, Tu B, Zhao D, Adv. Eng. Mater., 1, 382 (2011)
- Ryu Z, Zheng J, Wang M, Carbon, 36, 427 (1998)
- Marcinauskas L, Kavaliauskas Z, Valincius V, J. Mater. Technol., 28, 931 (2012)
- Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
- Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS, Int. J. Hydrog. Energy, 34(11), 4889 (2009)
- Kwon T, Nishihara H, Itoi H, Yang QH, Kyotani T, Langmuir, 25(19), 11961 (2009)
- Rakhi RB, Alshareef HN, J. Power Sources, 196(20), 8858 (2011)
- Shakir I, Nadeem M, Shahid M, Kang DJ, Electrochim. Acta, 118, 138 (2014)
- Battumur T, Ambade SB, Ambade RB, Pokharel P, Lee DS, Han SH, Lee W, Lee SH, Curr. Appl. Phys., 13(1), 196 (2013)
- Morton WJ, Method of dispersing fluids, UNITED STATES PATENT, N0. 705,691 (1902).
- Kim C, An KH, Lee WH, Yang KS, Nanocomposite fiber, its preparation and use, Korean Patent 10-2004-0088578 (in Korean) (2004).
- Fennessey SF, Farris RJ, Polymer, 45(12), 4217 (2004)
- Shao C, Kim HY, Gong J, Ding B, Lee DR, Park SJ, Mater. Lett., 57, 1579 (2003)
- Holzmeister A, Rudisile M, Greiner A, Wendorff JH, Eur. Polym. J., 43, 4859 (2007)
- He Y, Zhang T, Zheng W, Wang R, Liu X, Xia Y, Zhao J, Sens. Actuators B-Chem., 146, 98 (2010)
- McCann JT, Marquez M, Xia YN, J. Am. Chem. Soc., 128(5), 1436 (2006)
- Ra EJ, Kim TH, Yu WJ, An KH, Lee YH, Chem. Commun., 46, 1320 (2010)
- Kim C, Yang KS, Appl. Phys. Lett., 83, 1216 (2003)
- Xia K, Gao Q, Jiang J, Hu J, Carbon, 46, 1718 (2008)
- Hu JL, Huang JH, Chih YK, Chuang CC, Chen JP, Cheng SH, Horng JL, Diam. Relat. Mat., 18, 511 (2009)
- Ju YW, Choi GR, Jung HR, Lee WJ, Electrochim. Acta, 53(19), 5796 (2008)
- Wang H, Gao Q, Hu J, Microporous Mesoporous Mater., 131, 89 (2010)
- Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P, J. Am. Chem. Soc., 130(9), 2730 (2008)
- Wang KP, Teng H, Carbon, 44, 3218 (2006)
- Fan J, Wang T, Yu CZ, Tu B, Jiang ZY, Zhao DY, Adv. Mater., 16(16), 1432 (2004)
- Shi L, He H, Fang Y, Jia Y, Luo B, Zhi L, Chin. Sci. Bull., 59, 1832 (2014)
- Rarnani M, Haran BS, White RE, Popov BN, J. Electrochem. Soc., 148(4), A374 (2001)
- Chuang CM, Huang CW, Teng H, Ting JM, Compos. Sci. Technol., 72, 1524 (2012)
- Lee BJ, Sivakkumar SR, Ko JM, Kim JH, Jo SM, Kim DY, J. Power Sources, 168(2), 546 (2007)
- Ju YW, Choi GR, Jung HR, Kim C, Yang KS, Lee WJ, J. Electrochem. Soc., 154(3), A192 (2007)
- Dong XP, Shen WH, Gu JL, Xiong LM, Zhu YF, Li Z, Shi JL, J. Phys. Chem. B, 110(12), 6015 (2006)
- Liu M, Gan L, Xiong W, Xu Z, Zhu D, Chen L, J. Mater. Chem. A, 2, 2555 (2014)
- Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H, Kajita K, Solid State Ion., 152, 833 (2002)
- Wang GX, Zhang BL, Yu ZL, Qu MZ, Solid State Ion., 176, 1169 (2005)
- Suzuki S, Hibino M, Miyayama M, J. Power Sources, 124(2), 513 (2003)
- Dobley A, Ngala K, Yang S, Zavalij PY, Whittingham MS, Chem. Mater., 13, 4382 (2001)
- Sakamoto JS, Dunn B, J. Electrochem. Soc., 149(1), A26 (2002)
- Nam KW, Lee ES, Kim JH, Lee YH, Kim KB, J. Electrochem. Soc., 152(11), A2123 (2005)
- Kim IH, Kim JH, Kim KB, Electrochem. Solid State Lett., 8(7), A369 (2005)
- Kim BH, Kim CH, Yang KS, Rahy A, Yang DJ, Electrochim. Acta, 83, 335 (2012)
- Kim BH, Yang KS, Yang DJ, Electrochim. Acta, 109, 859 (2013)
- Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukla AK, J. Am. Chem. Soc., 133(40), 16291 (2011)
- Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T, J. Phys. Chem. C, 111, 227 (2007)
- Woo SW, Dokko K, Nakano H, Kanamura K, J. Mater. Chem., 18, 1674 (2008)
- Wang DW, Li F, Liu M, Lu GQ, Cheng HM, Angew. Chem.-Int. Edit., 47, 373 (2008)
- Selvakumar M, Bhat DK, Aggarwal AM, Iyer SP, Sravani G, Phys. B, 405, 2286 (2010)
- Aravinda LS, Nagaraja KK, Nagaraja HS, Bhat KU, Bhat BR, Electrochim. Acta, 95, 119 (2013)
- Zhang YP, Sun XW, Pan LK, Li HB, Sun Z, Sun CP, Tay BK, Solid State Ion., 180(32-35), 1525 (2009)
- Kalpana D, Omkumar KS, Kumar SS, Renganathan NG, Electrochim. Acta, 52(3), 1309 (2006)
- Kim CH, Kim BH, J. Power Sources, 274, 512 (2015)
- Kim CH, Kim BH, J. Electroanal. Chem., 730, 1 (2014)
- Mu J, Shao C, Guo Z, Zhang Z, Zhang M, Zhang P, Chen B, Liu Y, ACS Appl. Mater. Interfaces, 3, 590 (2011)
- Chen S, Zhu JW, Wu XD, Han QF, Wang X, ACS Nano, 4, 2822 (2010)