Journal of Industrial and Engineering Chemistry, Vol.22, 335-340, February, 2015
Fuel properties of canola oil and lard biodiesel blends: Higher heating value, oxidative stability, and kinematic viscosity
E-mail:
The fuel properties of biodiesel are affected by the fatty acids composition of oils/fats. These fuel
properties such as higher heating value, oxidative stability, and kinematic viscosity correlate with the molecular weight and the number of double bonds in fatty acid alkyl esters. Biodiesel is produced by mixing both canola oil and lard having different fatty acids compositions; optimum alcohol/oil molar ratio yielding the largest fatty acid alkyl ester content was 9 with 50 wt% or more canola oil and 12 with 50 wt% or less canola oil, depending on the mixing ratio. The higher heating values of the produced biodiesels were similar regardless of the mixing ratio of lard and canola oil. When the proportion of lard in oxidative stability and proportion of canola oil in kinematic viscosity are higher, the fuel properties are better. Thus, considering both fatty acid alkyl ester contents and fuel properties, the optimum mixing ratio of canola oil and lard was determined as 3:7 in methanolysis and 1:9 in ethanolysis.
Keywords:Biodiesel;Fatty acid alkyl ester;Higher heating value;Oxidative stability;Kinematic viscosity
- Sigar CP, Soni SL, Mathur J, Sharma D, Energy Sources Part A-Recovery Util. Environ. Eff., 31, 139 (2008)
- Demirbas A, Energy Conv. Manag., 49(8), 2106 (2008)
- Balat M, Balat M, Int. J. Hydrog. Energy, 34(9), 3589 (2009)
- Cho HJ, Lee SB, Lee JD, Appl. Chem. Eng., 22(2), 155 (2011)
- Ma FR, Hanna MA, Bioresour. Technol., 70(1), 1 (1999)
- Issariyakul T, Kulkarni MG, Meher LC, Dalai AK, Bakhshi NN, Chem. Eng. J., 140(1-3), 77 (2008)
- Dmytryshyn SL, Dalai AK, Chaudhari ST, Mishra HK, Reaney MJ, Bioresour. Technol., 92(1), 55 (2004)
- Guru M, Artukoglu BD, Keskin A, Koca A, Energy Conv. Manag., 50(3), 498 (2009)
- Demirbas A, Energy Conv. Manag., 43(17), 2349 (2002)
- Hong IK, Park JW, Lee SB, J. Ind. Eng. Chem., 19(3), 764 (2013)
- Dias JM, Alvim-Ferraz MCM, Almeida MF, Bioresour. Technol., 100(24), 6355 (2009)
- Encinar JM, Sanchez N, Martinez G, Garcia L, Bioresour. Technol., 102(23), 10907 (2011)
- Canoira L, Rodriguez-Gamero M, Querol E, Alcantara R, Lapuerta M, Oliva F, Ind. Eng. Chem. Res., 47(21), 7997 (2008)
- Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M, Renew. Sust. Energ. Rev., 16, 143 (2012)
- Knothe G, Energy Fuels, 22(2), 1358 (2008)
- Fassinou WF, Energy, 45(1), 798 (2012)
- Ramirez-Verduzco LF, Rodriguez-Rodriguez JE, Jaramillo-Jacob AD, Fuel, 91(1), 102 (2012)
- Dinkov R, Hristov G, Stratiev D, Aldayri VB, Fuel, 88(4), 732 (2009)
- Knothe G, Dunn RO, J. Am. Oil Chem. Soc., 80, 1021 (2003)
- McCormick RL, Ratcliff M, Moens L, Lawrence R, Fuel Process. Technol., 88, 651 (2007)
- Park JY, Kim DK, Lee JP, Park SC, Kim YJ, Lee JS, Bioresour. Technol., 99(5), 1196 (2008)
- Wang L, Yu H, He X, Liu R, J. Fuel Chem. Technol., 40, 397 (2012)
- Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A, Bioresour. Technol., 100(1), 261 (2009)
- Dunn RO, Fuel Process. Technol., 86(10), 1071 (2005)
- Knothe G, Fuel Process. Technol., 86(10), 1059 (2005)
- Lin CY, Fan CL, Fuel, 90(6), 2240 (2011)
- Balat M, Energy Sources Part A-Recovery Util. Environ. Eff., 30(20), 1856 (2008)
- Adhikari S, Fernando S, Gwaltney SR, To SDF, Bricka RM, Steele PH, Haryanto A, J. Hydrol. Eng., 32, 2875 (2007)
- Noureddini H, Zhu D, J. Am. Oil Chem. Soc., 74, 1457 (1997)
- Leung DYC, Guo Y, Fuel Process. Technol., 87(10), 883 (2006)