화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.23, 290-298, March, 2015
Bio-inspired synthesis and characterization of mesoporous ZnFe2O4 hollow fibers with enhancement of adsorption capacity for acid dye
E-mail:
Magnetic ZnFe2O4 hollow fibers were synthesized via a facile bio-template method involving pore-fabricating and nanoparticle assembling process. The as-prepared kapok-morphic ZnFe2O4 exhibited hollow fiber structure composed of nanocrystallites with grain sizes of 30?50 nm. The adsorption kinetics equilibrium and thermodynamics of acid fuchsin onto ZnFe2O4 were investigated. It was found that the adsorption was spontaneous and exothermic, and the adsorption process was well described by both the Langmuir isotherm model and the pseudo-second order kinetics model. The maximum adsorption capacity of ZnFe2O4 hollow fibers for acid fuchsin was 150.37 mg/g. Electrostatic absorption was conceived as the main adsorption mechanisms.
  1. Piccin JS, Gomes CS, Feris LA, Gutterres M, Chem. Eng. J., 183, 30 (2012)
  2. Toor M, Jin B, Chem. Eng. J., 187, 79 (2012)
  3. Huang JQ, Cao YG, Liu ZG, Deng ZH, Wang WC, Chem. Eng. J., 191, 38 (2012)
  4. Elemen S, Perrin E, Kumbasar A, Yapar S, Dyes Pigment., 95, 102 (2012)
  5. Javadian H, Angaji MT, Naushad M, J. Ind. Eng. Chem., 20(5), 3890 (2014)
  6. Zhang L, Zhou XY, Guo XJ, Song XY, Liu XY, J. Mol. Catal. A-Chem., 335(1-2), 31 (2011)
  7. Kim BC, Lee J, Um W, Kim J, Joo J, Lee JH, Kwak JH, Kim JH, Lee C, Lee H, Addleman RS, Hyeon T, Gu MB, Kim J, J. Hazard. Mater., 192(3), 1140 (2011)
  8. Hou XY, Feng J, Liu XH, Ren YM, Fan ZJ, Zhang ML, J. Colloid Interface Sci., 353(2), 524 (2011)
  9. Konicki W, Sibera D, Mijowska E, Lendzion-Bielun Z, Narkiewicz U, J. Colloid Interface Sci., 398, 152 (2013)
  10. Rahimi R, Kerdari H, Rabbani M, Shafiee M, Desalination, 280(1-3), 412 (2011)
  11. Heuer H, Fink DJ, Laraia VJ, Arias JL, Calvert PD, Science, 255, 1098 (1992)
  12. Wang J, Zheng Y, Wang A, Ind. Crop. Prod., 40, 178 (2012)
  13. Patterson A, Phys. Rev., 56, 978 (1939)
  14. Weng SP, Analysis of Fourier Transform Infrared Spectrometry, Chemical Industry Press, Beijing, 2009.
  15. Parparit E, Brebu M, Uddin MA, Yanik J, Vasile C, Polym. Degrad. Stabil., 100, 1 (2014)
  16. Wang J, Zheng Y, Wang A, J. Environ. Sci., 25, 246 (2013)
  17. Han L, Zhou X, Wan L, Deng Y, Zhan S, J. Environ. Sci. Chem. Eng., 2, 123 (2014)
  18. Sing K, Everett DH, Haul R, Moscou L, Pierotti RA, Rouquerol J, Pure Appl. Chem., 57, 603 (1985)
  19. Yang J, Analysis of Dye, Chemical Industry Press, Beijing, 1987.
  20. Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
  21. Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
  22. Jia H, Wang X, Han B, Chin. J. Environ. Eng., 5, 1800 (2011)
  23. Chen X, Fine Chem., 30, 776 (2013)
  24. Li A, Sun J, Du Q, Zhang L, Yang X, Wu S, Xia Y, Wang Z, Carbohydr. Polym., 102, 755 (2014)
  25. Dutta M, Basu JK, Int. J. Environ. Sci. Technol., 11, 87 (2014)
  26. Song Z, Chen L, Hu J, Richards R, Nanotechnology, 20, 275707 (2009)
  27. Elsherbiny AS, Appl. Clay Sci., 83-84(83), 56 (2013)
  28. Stumm W, Morgan JJ, Aquatic Chemistry: Chemical Equilibrium and Rates in Natural Waters, 3rd ed., Wiley, New York, 1995p. 1040.
  29. Morais PC, Qu F, J. Magn. Magn. Mater., 252, 117 (2002)
  30. Cheng WL, Dye Chemistry, China Textile and Apparel Press, Beijing, 2010.
  31. Deraz NM, Alarifi A, Int. J. Electrochem. Sci., 7, 6501 (2012)
  32. Balaji G, Gajbhiye N, Wilde G, Weissmuller J, J. Magn. Magn. Mater., 242-245(242), 617 (2002)