Journal of Industrial and Engineering Chemistry, Vol.24, 98-106, April, 2015
Mono/multinuclear cobaloxime and organocobaloxime-catalyzed conversion of CO2 and epoxides to cyclic organic carbonates: Synthesis and characterization
E-mail:
The synthesis and characterization of the mono- and multinuclear cobaloxime and organocobaloxime complexes bearing bidentate dimethyl glyoxime ligands are presented. All mono- and multinuclear cobaloxime and organocobaloxime complexes are used as catalysts for the cycloaddition of CO2 to various epoxides, especially epichlorohydrin, in the presence of 4-dimethylamino pyridine (DMAP) as a cocatalyst. In the catalytic applications, DMAP was a more active base with higher yield compared to other Lewis bases. Complexes (1) and (3), which have two dimethyl glyoxime per cobalt center (mononuclear complexes), are better catalytic systems than the corresponding multinuclear cobaloxime and organocobaloxime complexes (2-5) and (7-10) with two dimethyl glyoxime per cobalt center and one linked ligands per copper center. In addition, the organocobaloxime complex (6) showed the highest activity for the cycloaddition of CO2 with epichlorohydrin in the presence of 4-dimethylamino pyridine (DMAP) as cocatalyst. The used as catalysts mono- and multinuclear cobaloxime and organocobaloxime complexes were characterized by 1H and 13C NMR spectra, FT-IR spectra, UV-vis spectra, LC-MS spectra, molar conductivity measurements, melting point measurements and magnetic susceptibility measurements.
- Aresta M (Ed.), Carbon Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim, 2010.
- Suib SL (Ed.), New and Future Developments in Catalysis: Activation of Carbon Dioxide, Elsevier, Amsterdam, 2013.
- Anastas PT, Lankey RL, Green Chem., 2, 289 (2000)
- Darensbourg DJ, Holtcamp MW, Coord. Chem. Rev., 153, 155 (1996)
- Bayardon J, Holz J, Schaffner B, Andrushko V, Verekin S, Preetz A, Borner A, Angew. Chem.-Int. Edit., 46, 5971 (2007)
- Arakawa M, Tobishima S, Hirai T, Yamaki J, J. Electrochem. Soc., 133, 1527 (1986)
- Takata T, Furusho Y, Murakawa K, Endo T, Matsuoka H, Hirasa T, Matsuo J, Sisido M, J. Am. Chem. Soc., 120(18), 4530 (1998)
- Biggadike K, Angell RM, Burgess CM, Farrell RM, Hancock AP, Harker AJ, Irving AJ, Irving WR, Ioannou C, Procopiou PA, Shaw RE, Solanke YW, Singh OMP, Snowden MA, Stubbs R, Walton S, Weston HE, J. Med. Chem., 43, 19 (2000)
- Sharpless KB, Chang HT, Tetrahedron Lett., 37, 3219 (1996)
- Webster DC, Prog. Org. Coat., 47, 77 (2003)
- Shaikh AA, Sivaram S, Chem. Rev., 96(3), 951 (1996)
- North M, Pasquale R, Angew. Chem.-Int. Edit., 48, 2946 (2009)
- Nroth M, Villuendas P, Young C, Chem. Eur. J., 15, 11454 (2009)
- Ulusoy M, Kilic A, Durgun M, Tasci Z, Cetinkaya B, J. Organomet. Chem., 696, 1372 (2011)
- Ulusoy M, Sahin O, Kilic A, Buyukgungor O, Catal. Lett., 141(5), 717 (2011)
- Adhikari D, Nguyen ST, Baik MH, Chem. Commun., 50, 2676 (2014)
- Kilic A, Ulusoy M, Durgun M, Aytar E, Inorg. Chim. Acta., 411, 17 (2014)
- Kilic A, Palali AA, Durgun M, Tasci Z, Ulusoy M, Dagdevren M, Yilmaz I, Inorg. Chim. Acta., 394, 635 (2013)
- Kilic A, Kilic MV, Ulusoy M, Durgun M, Aytar E, Dagdevren M, Yilmaz I, J. Organomet. Chem., 767, 150 (2014)
- Aresta M, Dibenedetto A, Gianfrate L, Pastore C, J. Mol. Catal. A-Chem., 204-205, 245 (2003)
- Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K, J. Am. Chem. Soc., 121(18), 4526 (1999)
- Kozak JA, Wu J, Su X, Simeon F, Hatton TA, Jamison TF, J. Am. Chem. Soc., 135(49), 18497 (2013)
- Shen YM, Duan WL, Shi M, Adv. Synth. Catal., 345, 337 (2003)
- Saunders LN, Ikpo N, Petten CF, Das UK, Dawe LN, Kozak CM, Kerton FM, Catal. Commun., 18, 165 (2012)
- Zhou H, Wang YM, Zhang WZ, Qu JP, Lu XB, Green Chem., 13, 644 (2011)
- Zhou H, Zhang WZ, Wang YM, Liu CH, Qu JP, Lu XB, J. Org. Chem., 73, 8039 (2008)
- Kihara N, Hara N, Endo T, J. Org. Chem., 58, 6198 (1993)
- Jagtap SR, Bhanushali MJ, Panda AG, Bhanage BM, Catal. Lett., 112(1-2), 51 (2006)
- Udayakumar S, Park SW, Park DW, Choi BS, Catal. Commun., 9, 1563 (2008)
- Sun J, Cheng W, Yang Z, Wang J, Xu T, Xin J, Zhang S, Green Chem., 16, 3071 (2014)
- Earnshaw A, Introduction to Magnetochemistry, Academic Press, London, 1968p. 4
- Kilic A, Tas E, Gumgum B, Yilmaz I, J. Coord. Chem., 60(11), 1233 (2007)
- Trogler WC, Stewart RC, Epps LA, Marzilli LG, Inorg. Chem., 13, 1564 (1974)
- Toscano PJ, Marzilli LG, Prog. Inorg. Chem., 31, 105 (1984)
- Schrauzer GN, Kohnle J, Chem. Ber., 97, 3056 (1964)
- Chatterjee M, Maji M, Ghosh SP, Mak TCW, J. Chem. Soc.-Dalton Trans., 3641 (1998)
- Sengupta KK, Pal B, Bhattacharjee N, Ghosh SP, Bull. Chem. Soc. Jpn., 72, 1769 (1999)
- Bai D, Nian G, Wang G, Wang Z, Appl. Organomet. Chem., 27, 184 (2013)
- Rosenthall MR, J. Chem. Educ., 50, 331 (1973)
- Kilic A, Palali AA, Durgun M, Tasci Z, Ulusoy M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 113, 432 (2013)
- Ruchi SC, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 103, 338 (2013)
- Gary W, J. Chem. Rev., 7, 81 (1971)
- Ulusoy M, Cetinkaya E, Cetinkaya B, Appl. Organomet. Chem., 23, 68 (2009)
- Kilic A, Ulusoy M, Durgun M, Tasci Z, Yilmaz I, Cetinkaya B, Appl. Organomet. Chem., 24(6), 446 (2010)
- Jing HW, Nguyen ST, J. Mol. Catal. A-Chem., 261(1), 12 (2007)
- Shen YM, Duan WL, Shi M, J. Org. Chem., 68, 1559 (2003)