화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.24, 132-139, April, 2015
Heavy metal adsorption with biogenic manganese oxides generated by Pseudomonas putida strain MnB1
E-mail:
Biogenic Mn oxides (BMO) have attracted a great attention recently, due to their high heavy metals adsorption capacity. However, the characteristics of the heavy metals adsorption by BMO have not been explored in depth. In this study, nano-sized and poorly crystalline BMO was generated by Pseudomonas putida MnB1, and the heavy metals adsorption by BMO was investigated based on isotherm and kinetic studies. The adsorption capacities of BMO for Pb(II), Cd(II), and Zn(II) were 7?8 times higher than abiotic Mn oxide (i.e., birnessite). The results of the equilibrium adsorption study using several isotherm models showed that adsorption of Pb(II), Cd(II), and Zn(II) on BMO surfaces is a chemical adsorption. The adsorption of Pb(II) and Zn(II) was homogeneous but that of Cd(II) was heterogeneous, probably due to the contribution of ion exchange. Among three heavy metals, Pb(II) was preferentially adsorbed and the adsorption was faster than others. The adsorption capacity of heavy metals by BMO increased as pH increased and ionic strength decreased. It also increased as the temperature increased, indicating the adsorption is endothermic. The results of this study indicate that BMO is an excellent adsorbent due to the abundant vacancies in its amorphous structure.
  1. Shin WS, Kang K, Kim YK, Environ. Eng. Res., 19, 15 (2014)
  2. Crini G, Prog. Polym. Sci., 30, 38 (2005)
  3. Feng XH, Zhan LM, Tan WF, Lin F, He JZ, Environ. Pollut., 147, 366 (2007)
  4. Hansel CM, Zeiner CA, Santelli CM, Webb SM, PNAS, 109, 2621 (2012)
  5. Caspi R, Tebo BM, Haygood MC, Appl. Environ. Microbiol., 64, 3549 (1998)
  6. Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM, Annu. Rev. Earth Planet. Sci., 32, 287 (2004)
  7. Thompson IA, Huber DM, Schulze DG, Phytopathology, 96, 130 (2006)
  8. Villalobos M, Bargar J, Sposito G, Environ. Sci. Technol., 39, 569 (2005)
  9. Forrez I, Carballa M, Fink G, Wick A, Hennebel T, Vanhaecke L, Ternes T, Boon N, Verstraete W, Water Res., 45, 1763 (2011)
  10. Kim DG, Jiang SF, Jeong K, Ko SO, Water Air Soil Pollut., 223, 837 (2012)
  11. Sasaki K, Matsuda M, Urata T, Hirajima T, Konno H, Mater. Trans., 49, 605 (2008)
  12. Meng YT, Zheng YM, Zhang LM, He JZ, Environ. Pollut., 157, 2577 (2009)
  13. Villalobos M, Toner B, Bargar J, Sposito G, Geochim. Cosmochim. Acta, 67, 2649 (2003)
  14. Zhang J, Lion LW, Nelson YM, Shuler ML, Ghiorse WC, Geochim. Cosmochim. Acta, 66, 773 (2002)
  15. Tebo BM, Clement BG, Dick GJ, Environ. Microbiol., 3, 1223 (2007)
  16. Mandernack KW, Fogel ML, Tebo BM, Usui A, Geochim. Cosmochim. Acta, 59, 4409 (1995)
  17. McKenzie RM, Miner. Mag., 38, 493 (1971)
  18. Sips RJ, J. Chem. Phys., 16, 490 (1948)
  19. Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
  20. Dubinin MM, Chem. Rev., 60, 235 (1960)
  21. Adams LF, Ghiorse WC, J. Bacteriol., 169, 1279 (1987)
  22. Post JE, Proc. Natl. Acad. Sci. U. S. A., 96, 3447 (1999)
  23. Hsu JN, Tsai CJ, Chiang C, Li SN, JAPCA J. Air Waste Manage., 57, 204 (2007)
  24. Astuti Q, Prasetya A, Wahyuni ET, Bendiyasa IM, World Acad. Sci. Eng. Technol., 78, 805 (2011)
  25. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M, Appl. Geochem., 22, 249 (2007)
  26. Manceau A, Lanson B, Drits VA, Geochim. Cosmochim. Acta, 66, 2639 (2002)
  27. Xu Y, Boonfueng T, Axe L, Maeng S, Tyson T, J. Colloid Interface Sci., 299(1), 28 (2006)
  28. Serrano S, O’Day PA, Vlassopoulos D, Garcıa-Gonzalez MT, Garrido F, Geochim. Cosmochim. Acta, 73, 543 (2009)
  29. Zhang H, Huang CH, Environ. Sci. Technol., 37, 2421 (2003)
  30. Li X, Yang L, Li Y, Ye Z, He A, J. Environ. Eng.-ASCE, 138, 940 (2012)
  31. Kang YL, Poon MY, Monash P, Ibrahim S, Saravanan P, Korean J. Chem. Eng., 30(10), 1904 (2013)
  32. Zhang WX, Li HJ, Kan XW, Dong L, Yan H, Jiang ZW, Yang H, Li AM, Cheng RS, Bioresour. Technol., 117, 40 (2012)
  33. Vijayendran RA, Leckband DE, Anal. Chem., 73, 47 (2001)
  34. Nelson YM, Lion LW, Ghiorse WC, Shuler ML, Appl. Biochem. Biotechnol., 65, 175 (1999)
  35. Tani Y, Ohashi M, Miyata N, Seyama H, Iwahori K, Soma M, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 10, 2641 (2004)
  36. Toner B, Manceau A, Web SM, Sposito G, Geochim. Cosmochim. Acta, 70, 27 (2006)
  37. Yasemin B, Zek T, J. Environ. Sci., 19, 160 (2007)
  38. Chaturvedi PK, Seth CS, Misra V, Chemosphere, 64, 1109 (2006)
  39. Shen X, Huang W, Yao C, Ying S, Chemosphere, 67, 1927 (2007)
  40. Mahamadi C, Nharingo T, Bioresour. Technol., 101(3), 859 (2010)
  41. Lanson B, Drits VA, Silvester E, Manceau A, Am. Mineral., 85, 826 (2000)
  42. Yu F, Wu Y, Ma J, Zhang C, J. Environ. Sci., 25, 195 (2013)
  43. Ho YS, J. Hazard. Mater., 136(3), 681 (2006)
  44. Chen XB, Wright JW, Conca JL, Peurrung LM, Environ. Sci. Technol., 31, 624 (1997)
  45. Machesky ML, in: Melchior DC, Bassett RL (Eds.), Chemical Modeling of Aqueous Systems II, ACS Symposium Series 416, Washington, DC, (1990), p. 282.
  46. Tso CP, Zhung CM, Shih YH, Tseng YM, Wu SC, Doong RA, Water Sci. Technol., 61, 127 (2010)