화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.25, 222-228, May, 2015
Steam reforming on reactive carbon nanotube membranes
E-mail:
We developed the first self-heated catalytic membrane made of carbon nanotubes (CNT) and used it for steam reforming of alcohols. After exploring a variety of Ni catalyst preparation methods, we selected the most promising route and made Ni@CNT membranes. Then, we used them to produce hydrogen from methanol, ethanol and iso-propanol whilst current was passed through to deliver thermal energy required for the catalytic reaction to take place. By employing Joule heating, we were able to reach temperatures up to about 450 °C and probe the catalytic activity of the system. Despite that such self-heated metal?CNT hybrid is still in early phase of development, it has already shown promises for microscale steam reforming and many other chemical transformations that require efficient and uniform heating conditions.
  1. REN21, Renewables 2014 Global Status Report, 2014.
  2. Amigun B, Gorgens J, Knoetze H, Energy Policy, 38(1), 312 (2010)
  3. Nakagawa H, Harada T, Ichinose T, Takeno K, Matsumoto S, Kobayashi M, Sakai M, JARQ-Jpn. Agric. Res. Q., 41, 173 (2007)
  4. Shubhra T, Jadhav SK, Tiwari KL, Esmil. Res. J. Biotechnol., 8, 10 (2013)
  5. Zaldivar J, Nielsen J, Olsson L, Appl. Microbiol. Biotechnol., 56(1-2), 17 (2001)
  6. Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I, Bioresour. Technol., 100(9), 2562 (2009)
  7. Tabka MG, Herpoel-Gimbert I, Monod F, Asther M, Sigoillot JC, Enzyme Microb. Technol., 39(4), 897 (2006)
  8. Zhu SH, Zhu YL, Hao SL, Zheng HY, Mo T, Li YW, Green Chem., 14, 2607 (2012)
  9. Amada Y, Koso S, Nakagawa Y, Tomishige K, ChemSusChem, 3, 728 (2010)
  10. Hsueh CY, Chu HS, Yan WM, Chen CH, Appl. Energy, 87(10), 3137 (2010)
  11. T-Raissi A, Block DL, Power Energy Mag., IEEE, 2, 40 (2004)
  12. Demirbas A, Energy Sources, 30, 924 (2008)
  13. Martavaltzi CS, Pampaka EP, Korkakaki ES, Lemonidou AA, Energy Fuel, 24, 2589 (2010)
  14. Muradov NZ, Veziroglu TN, Int. J. Hydrog. Energy, 33(23), 6804 (2008)
  15. Venkataraman K, Wanat EC, Schmidt LD, AIChE J., 49(5), 1277 (2003)
  16. Chein RY, Chen YC, Chung JN, Appl. Energy, 102, 1022 (2013)
  17. Armor JN, Appl. Catal. A: Gen., 176(2), 159 (1999)
  18. Cubeiro ML, Fierro JLG, Appl. Catal. A: Gen., 168(2), 307 (1998)
  19. Barbieri G, Violante V, Dimaio FP, Criscuoli A, Drioli E, Ind. Eng. Chem. Res., 36(8), 3369 (1997)
  20. Santucci A, Annesini MC, Borgognoni F, Marrelli L, Rega M, Tosti S, Int. J. Hydrog. Energy, 36(2), 1503 (2011)
  21. Brown JC, Gulari E, Catal. Commun., 5, 431 (2004)
  22. Rioche C, Kulkarni S, Meunier FC, Breen JP, Burch R, Appl. Catal. B: Environ., 61(1-2), 130 (2005)
  23. Jakobsen JG, Jakobsen M, Chorkendorff I, Sehested J, Catal. Lett., 140(3-4), 90 (2010)
  24. Basagiannis AC, Verykios XE, Catal. Today, 127(1-4), 256 (2007)
  25. Igarashi A, Ohtaka T, Motoki S, Catal. Lett., 13, 189 (1992)
  26. Frank B, Jentoft FC, Soerijanto H, Krohnert J, Schlogl R, Schomacker R, J. Catal., 246(1), 177 (2007)
  27. Mastalir A, Frank B, Szizybalski A, Soerijanto H, Deshpande A, Niederberger M, Schomacker R, Schlogl R, Ressler T, J. Catal., 230(2), 464 (2005)
  28. Nakagoe O, Furukawa Y, Tanabe S, Sugai Y, Narikiyo R, International Conference on Renewable Energy Research and Applications (ICRERA), 2012.
  29. Bayram B, Soykal II, von Deak D, Miller JT, Ozkan US, J. Catal., 284(1), 77 (2011)
  30. Sun J, Qiu XP, Wu F, Zhu WT, Int. J. Hydrog. Energy, 30(4), 437 (2005)
  31. Rakass S, Oudghiri-Hassani H, Rowntree P, Abatzoglou N, J. Power Sources, 158(1), 485 (2006)
  32. Sehested J, Gelten JAP, Remediakis IN, Bengaard H, Norskov JK, J. Catal., 223(2), 432 (2004)
  33. Iulianelli A, Ribeirinha P, Mendes A, Basile A, Renew. Sust. Energ. Rev., 29, 355 (2014)
  34. Janas D, Koziol KK, Carbon, 59, 457 (2013)
  35. Singh C, Shaffer MSP, Koziol KKK, Kinloch IA, Windle AH, Chem. Phys. Lett., 372(5-6), 860 (2003)
  36. Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A, Science, 318, 1892 (2007)
  37. Janas D, Vilatela AC, Koziol K, Carbon, 62, 438 (2013)
  38. Janas D, Cabrero-Vilatela A, Bulmer J, Kurzepa L, Koziol KK, Carbon, 64, 305 (2013)
  39. Yang HM, Liao PH, Appl. Catal. A: Gen., 317(2), 226 (2007)
  40. Lopez E, Kim J, Shanmugharaj AM, Ryu SH, J. Mater. Sci., 47(6), 2985 (2012)
  41. Luo K, Shi NL, Cong HT, Sun C, J. Solid State Electrochem., 10, 1003 (2006)
  42. Pojanavaraphan C, Luengnaruemitchai A, Gulari E, Int. J. Hydrog. Energy, 37(19), 14072 (2012)
  43. Bobadilla LF, Palma S, Ivanova S, Dominguez MI, Romero-Sarria F, Centeno MA, Odriozola JA, Int. J. Hydrog. Energy, 38(16), 6646 (2013)
  44. Silverstein RM, Webster FX, Kiemle DJ, Spectrometric identification of organic compounds, seventh ed., John Wiley & Sons, Hoboken, NJ, 2005.
  45. Thangaraj R, Kumar AS, Anal. Methods, 4, 2162 (2012)
  46. Smirnov A, Hausner D, Laffers R, Strongin DR, Schoonen MAA, Geochem. Trans., 9 (2008)
  47. Courtade L, Turquat C, Muller C, Lisoni JG, Goux L, Wouters DJ, Goguenheim D, Roussel P, Ortega L, Thin Solid Films, 516(12), 4083 (2008)
  48. Jiang JJ, Wang H, Guo HH, Yang T, Tang WS, Li D, Ma S, Geng DY, Liu W, Zhang ZD, Nanoscale Res. Lett., 7, 1 (2012)
  49. Wang ZH, Kale GM, Yuan QC, Ghadiri M, RSC Adv., 2, 9993 (2012)
  50. Bussamara R, Eberhardt D, Feil AR, Migowski P, Wender H, de Moraes DP, Machado G, Papaleo RM, Teixeira SR, Dupont J, Chem. Commun., 49, 1273 (2013)
  51. Song PX, Wen DS, Guo ZX, Korakianitis T, Phys. Chem. Chem. Phys., 10, 5057 (2008)
  52. Railsback JG, Johnston-Peck AC, Wang JW, Tracy JB, ACS Nano, 4, 1913 (2010)
  53. Ni M, Leung DYC, Leung MKH, Int. J. Hydrog. Energy, 32(15), 3238 (2007)
  54. Li JC, Yu H, Yang GX, Peng F, Xie DL, Wang HJ, Yang J, Energy Fuels, 25(6), 2643 (2011)
  55. Chiu PC, Ku Y, Wu HC, Kuo YL, Tseng YH, Energy Fuels, 28(1), 657 (2013)
  56. Mizuno T, Matsumura Y, Nakajima T, Mishima S, Int. J. Hydrog. Energy, 28(12), 1393 (2003)