화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.25, 288-294, May, 2015
Simulation of V2O5/TiO2 catalyst activity by central composite design for optimal operating conditions and catalyst life in phthalic anhydride production
E-mail:
A simple central composite design was applied to estimate the activity of V2O5/TiO2 catalyst and catalyst life in phthalic anhydride production. Using 1?3 years of simulation data, it was found that the temperature profiles along the catalyst bed and the outlet flow rates of phthalic anhydride and maleic anhydride (main by-product) were less than 8% deviation compared with the plant data. In comparing the simulated optimal conditions to the normal operating conditions, the phthalic anhydride production increased by 1,600 ton with the inlet o-xylene-air ratio (w/w) and the coolant temperature, while maleic anhydride decreased by approximately 340 ton.
  1. Elnashaie SSEH, Elshishini SS, Modelling, Simulation and Optimization of Industrial Fixed Bed Catalytic Reactors, Gordon and Breach, Amsterdam, 1993p. 100.
  2. Ancheyta J, Modeling and Simulation of Catalytic Reactors for Petroleum Refining, Wiley & Sons, New Jersey, 2011p. 102.
  3. Bhat GR, Gupta SK, Chem. Eng. Res. Des., 86(9A), 959 (2008)
  4. Calderbank PH, Chandrasekharan K, Fumagalli C, Chem. Eng. Sci., 32, 1435 (1977)
  5. Wainwright MS, Foster NR, Catal. Rev.-Sci. Eng., 19(2), 211 (1979)
  6. Skrzypek J, Grzesik M, Galantowicz M, Solinski J, Chem. Eng. Sci., 40, 611 (1985)
  7. Dias CR, Portela MF, Bond GC, J. Catal., 164(2), 276 (1996)
  8. Gimeno MP, Gascon J, Tellez C, Herguido J, Menendez M, Chem. Eng. Process., 47(9-10), 1844 (2008)
  9. Marx R, Wolk HJ, Mestl G, Turek T, Appl. Catal. A: Gen., 398(1-2), 37 (2011)
  10. Mars P, van Krevelen DW, Spec. Suppl. Chem. Eng. Sci., 3, 41 (1954)
  11. Shelstad KA, Downie J, Graydon WF, Can. J. Chem. Eng., 58, 102 (1960)
  12. Forzatti P, Lietti L, Catal. Today, 52(2-3), 165 (1999)
  13. Peng Y, Li J, Chen L, Chen J, Han J, Zhang H, Han W, Environ. Sci. Technol., 46, 2864 (2012)
  14. Lei Z, Han B, Yang K, Chen B, Chem. Eng. J., 215-216, 651 (2013)
  15. Shen B, Zhang X, Ma H, Yao Y, Liu T, J. Environ. Sci., 25(4), 791 (2013)
  16. Guo RT, Wang QS, Pan WG, Zhen WL, Chen QL, Ding HL, Yang NZ, Lu CZ, Appl. Surf. Sci., 317, 111 (2014)
  17. Dias CR, Portela MF, Bond GC, J. Catal., 162(2), 284 (1996)
  18. Mongkhonsri T, Dynamic Behaviour of a Fixed-bed Catalytic Reactor with Catalyst Deactivation, University of London, 1994 (PhD. Thesis).
  19. Anastasov AI, Chem. Eng. Process., 42(6), 449 (2003)
  20. Roininen J, Alopaeus V, Ind. Eng. Chem. Res., 47(21), 8192 (2008)
  21. Kordabadi H, Jahanmiri A, Chem. Eng. J., 108(3), 249 (2005)
  22. Montgomery DC, Design and Analysis of Experiments, Eighth ed., Wiley & Sons, 2012.
  23. Froment GF, Bischoff KB, Chemical Reactor Analysis and Design, second ed., Wiley & Sons, New York, 1990p. 467.
  24. Quina MMJ, Ferreira RMQ, Ind. Eng. Chem. Res., 38(12), 4615 (1999)
  25. Anastasov A, Elenkov D, Nikolov V, Chem. Eng. Process., 23, 203 (1988)
  26. Vanhove D, Blanchard M, J. Catal., 36, 6 (1975)
  27. Anastasov AI, Chem. Eng. Sci., 58(1), 89 (2003)
  28. Tsikonis L, Herle JV, Favrat D, Fuel Cells, 12(1), 32 (2012)