화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.27, 102-107, July, 2015
Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites
E-mail:
New composites of UiO-66 and graphene oxide (GO) were synthesized and tested as CO2 adsorbents at room temperature. The materials and the parent composite components were characterized using X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), nitrogen adsorption?desorption isotherm analysis, scanning electron microscopy (SEM), and FT-IR spectroscopy. The CO2 isotherms on the UiO-66/GO composites and the UiO-66 were measured by a static volumetric method separately. Experiments of multiple adsorption/desorption cycles were conducted to estimate reversibility of CO2 on the UiO-66/GO. The results showed that the BET surface area of the composites was higher than that of the parent UiO-66, and the adsorption capacities of CO2 on the composites were greatly higher than that on the UiO-66 sample. The composite UiO-66/GO-5 exhibited the maximum CO2 uptake of 3.37 mmol/g at 298 K and 1 bar, which increased by 48% in comparison with that of the UiO-66, and was much higher than those of the conventional activated carbons and the zeolites. The CO2 adsorption capacity was dependent on the BET surface area and the micropore volume of the composites. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of UiO-66/GO-5 was fairly stable, without noticeable degradation in the adsorption capacity of CO2 after 6 cycles. Therefore, this kind of composites has a potential application on CO2 capture technologies to mitigate global warming.
  1. Aaron D, Tsouris C, Sep. Sci. Technol., 40(1-3), 321 (2005)
  2. D’Alessandro DM, Smit B, Long JR, Angew. Chem.-Int. Edit., 49, 6058 (2010)
  3. Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ, Energy Environ. Sci., 5, 7323 (2012)
  4. Kim J, Lin LC, Swisher JA, Haranczyk M, Smit B, J. Am. Chem. Soc., 134(46), 18940 (2012)
  5. Halabi MH, de Croon MHJM, van der Schaaf J, Cobden PD, Schouten JC, Int. J. Hydrog. Energy, 37(5), 4516 (2012)
  6. Sanz R, Calleja G, Arencibia A, Sanz-Perez ES, Microporous Mesoporous Mater., 158, 309 (2012)
  7. Zhao Y, Shen YM, Bai L, J. Colloid Interface Sci., 379, 94 (2012)
  8. Liu J, Thallapally PK, McGrail BP, Brown DR, Chem. Soc. Rev., 41, 2308 (2012)
  9. Millward AR, Yaghi OM, J. Am. Chem. Soc., 127(51), 17998 (2005)
  10. Li H, Eddaoudi M, Groy TL, Yaghi OM, J. Am. Chem. Soc., 120(33), 8571 (1998)
  11. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID, Science, 283(5405), 1148 (1999)
  12. Petit C, Bandosz TJ, Adv. Mater., 21(46), 4753 (2009)
  13. Prasanth KP, Rallapalli P, Raj MC, Bajaj HC, Jasra RV, Int. J. Hydrog. Energy, 36(13), 7594 (2011)
  14. Anbia M, Sheykhi S, J. Ind. Eng. Chem., 19(5), 1583 (2013)
  15. Zhao YX, Seredych M, Zhong Q, Bandosz TJ, RSC Adv., 3, 9932 (2013)
  16. Zhao YX, Seredych M, Zhong Q, Bandosz TJ, ACS Appl. Mater. Interfaces, 5, 4951 (2013)
  17. Meilikhov M, Yusenko K, Esken D, Turner S, Van Tendeloo G, Fischer RA, J. Inorg. Chem., 2010, 3701 (2010)
  18. Rallapalli PBS, Raj MC, Patil DV, Prasanth KP, Somani RS, Bajaj HC, Int. J. Energy Res., 37(7), 746 (2013)
  19. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS, Chem. Rev., 112(11), 6156 (2012)
  20. Kemp KC, Seema H, Saleh M, Le NH, Mahesh K, Chandra V, Kim KS, Nanoscale, 5, 3149 (2013)
  21. Lerf A, He HY, Forster M, Klinowski J, J. Phys. Chem. B, 102(23), 4477 (1998)
  22. Petit C, Bandosz TJ, J. Mater. Chem., 19, 6521 (2009)
  23. Sun XJ, Xia QB, Zhao ZX, Li YW, Li Z, Chem. Eng. J., 239, 226 (2014)
  24. Kumar R, Jayaramulu K, Maji TK, Rao CNR, Chem. Commun., 49, 4947 (2013)
  25. Liu S, Sun L, Xu F, Zhang J, Jiao C, Li F, et al., Energy Environ. Sci., 6, 818 (2013)
  26. Ahmed I, Khan NA, Jhung SH, Inorg. Chem., 52(24), 14155 (2013)
  27. Jahan M, Bao QL, Yang JX, Loh KP, J. Am. Chem. Soc., 132(41), 14487 (2010)
  28. Jahan M, Liu Z, Loh KP, Adv. Funct. Mater., 23, 5363 (2013)
  29. Li L, Liu XL, Geng HY, Hu B, Song GW, Xu ZS, J. Mater. Chem. A, 1, 10292 (2013)
  30. Lee JH, Kang S, Jaworski J, Kwon KY, Seo ML, Lee JY, et al., Chem. Eur. J., 18, 765 (2012)
  31. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP, J. Am. Chem. Soc., 130(42), 13850 (2008)
  32. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP, Chem. Mater., 22, 6632 (2010)
  33. Chavan S, Vitillo JG, Uddin MJ, Bonino F, Lamberti C, Groppo E, Lillerud KP, Bordiga S, Chem. Mater., 22, 4602 (2010)
  34. Silva CG, Luz I, Llabres i Xamena FX, Corma A, Garcia H, Chem. Eur. J., 16, 11133 (2010)
  35. Vermoortele F, Ameloot R, Vimont A, Serre C, De Vos D, Chem. Commun., 47, 1521 (2011)
  36. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
  37. Abid HR, Tian HY, Ang HM, Tade MO, Buckley CE, Wang SB, Chem. Eng. J., 187, 415 (2012)
  38. Cai DY, Song M, J. Mater. Chem., 17, 3678 (2007)
  39. Zhao Q, Yuan W, Liang JM, Li JP, Int. J. Hydrog. Energy, 38(29), 13104 (2013)
  40. Ebrahim AM, Bandosz TJ, ACS Appl. Mater. Interfaces, 5, 10565 (2013)
  41. Herrera-Alonso M, Abdala AA, McAllister MJ, Aksay IA, Prud'homme RK, Langmuir, 23(21), 10644 (2007)
  42. Yang YF, Wang J, Zhang J, Liu JC, Yang XL, Zhao HY, Langmuir, 25(19), 11808 (2009)
  43. Kaye SS, Dailly A, Yaghi OM, Long JR, J. Am. Chem. Soc., 129(46), 14176 (2007)
  44. Petit C, Bandosz TJ, Adv. Funct. Mater., 21(11), 2108 (2011)
  45. Barcia PS, Guimaraes D, Mendes PAP, Silva JAC, Guillerm V, Chevreau H, Serre C, Microporous Mesoporous Mater., 139, 67 (2011)